4 resultados para Eutrophication.
em Repositório Institucional da Universidade Federal do Rio Grande do Norte
Resumo:
The aims of this study were: i) assessing the trophic state of the Mendubim reservoir (semi-arid, Rio Grande do Norte, Brazil; 05° 38 99,0 S 36°55 98,0 W) based on chlorophyll-a, total phosphorus and nitrogen concentrations and water transparency; ii) relating the patterns of temporal variation of zooplankton and phytoplankton to the trophic state of the reservoir and iii) investigating the carrying capacity of the reservoir for cage fish farming. The samplingwas done monthly from July 2006 to July 2007 in three stations at the reservoir: next to the dam (barrage), in the central region and in the mouth of the main tributary. The abiotic and biotic variables analyzed were: Secchi depth, volatiles and fixed suspended solids, chlorophyll-a, total phosphorus and nitrogen, TN:TP ratio and mesozooplankton and phytoplankton composition and biomass. The results showed that the reservoir can be considered as mesotrophic with mean concentrations of total nitrogen, phosphorus and chlorophyll-a equal to 1711, 1 μg.L-1, 30,8 μg.L-1 and 5,62 μg.L-1 respectively. The Cyanophyceae class was the most representative in terms of density, with the presence of potentially toxic species such as Microcystis aeruginosa, Planktothrix planctonica, Cylindrospermopsis raciborskii, Aphanizomenon sp. ,Aphanocapsa delicatissima and Pseudanabaena acicularis. Among the zooplankton, the genus Notodiaptomus presented the largest biomass values. Overall, our results show that the light limitation should explain the weak relationship between chlorophyll-a and total phosphorus and nitrogen concentrations. We concluded that the water of Mendubim reservoir is suitable for intensive fish cage aquaculture. Based on the carrying capacity calculations for this reservoir, we found that the maximum sustainable yield of tilapias in cages in the reservoir is 126 ton per year assuming a factor of food conversion of 1.5: 1.0 and a phosphorus content in the fish food of 1%
Resumo:
Marine shrimp farming has grown exponentially during the last years in Brazil. In spite of the promising economical situation, this activity is facing an increasing criticism due to its environmental impact. Thus, the necessity of alternatives to mitigate environmental degradation caused by this activity. An alternative that is being studied is the policulture that is the integrated culture of two or more organisms, normally one of them a filtering organism. Among filtering organisms, macroalgae are very practicable because they are efficient in the removal of the exceeding nutrients of the water and do not leave residues in the water. Besides, the integrated culture with macroalgae allows the economical exploration of the seaweed (for the manufacture of jelly and jam, for the dairy industry, pharmaceuticals, etc.) along with possibility of a sustainable aquaculture. In the present experiment, the development of the seaweed Gracilaria birdiae, the influence and tolerance of this species to the environmental parameters, and its absorption efficiency in relation with the three kinds of macronutrients (NH4+, NO3- and PO4-3) found in the effluents of marine shrimp farming was studied. The experiment was divided in two parts: a laboratorial part and one part carried under natural conditions. The water used in the laboratory trial was collected in the shrimp ponds of Tecnarão farm and distributed in aquaria containing 20 g of G. birdiae. In the field trial, 0.5 kg of G. birdiae was inserted in PVC cages cultivated in the farm. The results of the study showed a modest growth of G. birdiae, probably due to its low tolerance to highly eutrophicated environments. However, the removal of nutrients was very expressive. Ammonia was reduced in approximately 34 %. Ortho-phosphate showed a reduction of 93.5 %. The capacity of biofiltration of the NO3- by the macro algae was of 100 %, showing that G. birdiae is a seaweed-filtered with a high level of removal for this nutrient under laboratorial conditions. In spite of the low growth of the macro algae in the experiment, the results in relation to the removal of nutrients of the water was encouraging, suggesting that this species can be an efficient biofilter and thus, a strong candidate to be used in a sustainable aquaculture
Resumo:
The incidence of toxic cyanobacterial blooms is one of the important consequences of eutrophication in aquatic ecosystems. It is a very common phenomenon in reservoirs and shrimp ponds in the State of Rio Grande do Norte (RN), Brazil. Cyanobacterias produce toxins which can affect aquatic organisms and men trough the food chain. Aiming to contribute to the studies of cyanobacterias in RN, we propose: a) to evaluate the toxicity of isolated cyanobacterias in important fresh-water environments; and b) to verify the effects of both natural and cultured blooms occurred in reservoirs for human supply and in the cladoceran Ceriodaphnia silvestrii. This study was carried out using samples of natural blooms occurred between March and October of 2004 in Gargalheiras Dam (08º L e 39º W), in July of 2004 in Armando Ribeiro Gonçalves Dam (06o S e 37o W) and in commercial shrimp ponds (Litopenaeus vannamei) located in fresh-water environments. The samples were collected with plankton net (20µm.) for identification, isolation and obtaining of phytoplanktonic biomass for liophilization and later toxicity bioassays. The toxicity of cultured samples and natural blooms was investigated through bioassays in Swiss mice. Quantification of cyanobacteria in samples was conducted following the Ütermol method, with 300mL samples fixed with lugol. The toxicity test with Ceriodaphnia silvestrii followed ABNT, 2001 recommendations, and were accomplished with natural hepatotoxic bloom s samples and cultured samples of both non-toxic and neurotoxic C. raciborskii. In this test, five newborns, aged between 6 and 24 hours, were exposed to different concentrations (0 a 800 mg.L-1) of crude cyanobacterial extracts during 24 and 48 hours. Three replicates were used per treatment. The pH, temperature and dissolved oxygen at the beginning and after 24 and 48hours from the test were measured. We estimated the CL50 through the Trimmed Spearman-Karber method. The blooms were constituted by Microcystis panniformis, M. aeruginosa, Anabaena circinalis, Cylindrospermopsis raciborskii and Planktothrix agardhii, producers of mycrocistin-LR confirmed with HPLC analysis. Samples of hepatotoxic blooms registered toxinogenic potential for C. silvestrii, with CL50-24h value of 47.48 mg.L-1 and CL5048h of 38.15 mg.L-1 for GARG samples in march/2005; CL50-24h of 113,13 mg.L-1 and CL5048h of 88,24 mg.L-1 for ARG July/2004; CL50-24h of 300.39 mg.L-1 and CL50-48h of 149.89 mg.L-1 for GARG October/2005. For cultured samples, values of CL50-24h and CL50-48h for C. raciborskii toxic strains were 228.05 and 120.28 mg.L-1, respectively. There was no mortality of C. silvestrii during the tests with non-toxic C. raciborskii strain. The toxicity test with C. silvestrii presented good sensitivity degree to cyanotoxins. The toxicity of natural hepatotoxic blooms samples (microcystins) and cultured neurotoxic saxitoxins producer samples analyzed in this study give us strong indications of that toxin s influence on the zooplanktonic community structure in tropical aquatic environments. Eleven cyanobacteria strains were isolated, representing 6 species: Anabaenopsis sp., Cylindrospermopsis raciborskii, Chroococcus sp., Microcystis panniformis, Geitlerinema unigranulatum e Planktothrix agardhii. None presented toxicity in Swiss mice. The strains were catalogued and deposited in the Laboratório de Ecologia e Toxicologia de Organismos Aquáticos (LETMA), in UFRN, and will be utilized in ecotoxicológical and ecophysiological studies, aiming to clarify the causes and control of cyanobacterial blooms in aquatic environments in RN. This state s reservoirs must receive broader attention from the authorities, considering the constant blooms occurring in waters used for human consumption
Resumo:
The response of zooplankton assemblages to variations in the water quality of four man-made lakes, caused by eutrophication and siltation, was investigated by means of canonical correspondence analysis. Monte Carlo simulations using the CCA eingenvalues as test statistics revealed that changes in zooplankton species composition along the environmental gradients of trophic state and abiogenic turbidity were highly significant. The species Brachionus calyciflorus, Thermocyclops sp. and Argyrodiaptomus sp. were good indicators of eutrophic conditions while the species Brachionus dolabratus, Keratella tropica and Hexarthra sp. were good indicators of high turbidity due to suspended sediments. The rotifer genus Brachionus was the most species-rich taxon, comprising five species which were associated with different environmental conditions. Therefore, we tested whether this genus alone could potentially be a better biological indicator of these environmental gradients than the entire zooplankton assemblages or any other random set of five species. The ordination results show that the five Brachionus species alone did not explain better the observed pattern of environmental variation than most random sets of five species. Therefore, this genus could not be selected as a target taxon for more intensive environmental monitoring as has been previously suggested by Attayde and Bozelli (1998). Overall, our results show that changes in the water quality of man-made lakes in a tropical semi-arid region have significant effects on the structure of zooplankton assemblages that can potentially affect the functioning of these ecosystems