3 resultados para DISCOMFORT
em Repositório Institucional da Universidade Federal do Rio Grande do Norte
Resumo:
Nowadays, evaluation methods to measure thermal performance of buildings have been developed in order to improve thermal comfort in buildings and reduce the use of energy with active cooling and heating systems. However, in developed countries, the criteria used in rating systems to asses the thermal and energy performance of buildings have demonstrated some limitations when applied to naturally ventilated building in tropical climates. The present research has as its main objective to propose a method to evaluate the thermal performance of low-rise residential buildings in warm humid climates, through computational simulation. The method was developed in order to conceive a suitable rating system for the athermal performance assessment of such buildings using as criteria the indoor air temperature and a thermal comfort adaptive model. The research made use of the software VisualDOE 4.1 in two simulations runs of a base case modeled for two basic types of occupancies: living room and bedroom. In the first simulation run, sensitive analyses were made to identify the variables with the higher impact over the cases´ thermal performance. Besides that, the results also allowed the formulation of design recommendations to warm humid climates toward an improvement on the thermal performance of residential building in similar situations. The results of the second simulation run was used to identify the named Thermal Performance Spectrum (TPS) of both occupancies types, which reflect the variations on the thermal performance considering the local climate, building typology, chosen construction material and studied occupancies. This analysis generates an index named IDTR Thermal Performance Resultant Index, which was configured as a thermal performance rating system. It correlates the thermal performance with the number of hours that the indoor air temperature was on each of the six thermal comfort bands pre-defined that received weights to measure the discomfort intensity. The use of this rating system showed to be appropriated when used in one of the simulated cases, presenting advantages in relation to other evaluation methods and becoming a tool for the understanding of building thermal behavior
Resumo:
Owing to na intense process of urban development, urban uneasiness and discomfort in the daily life of populations have nowadays, especially in the big cities, become increasingly ordinary issues. Population density, degeneration of central areas and pollution are some of the environmental stressors the urban man is subjected to. The existence of open areas in the urban network contributes to a better movement of the air and transforms salubrity conditions. Yet, it has been noticed that parks and squares are disappearing from the heart of the city districts. In their place there are either unused plots of land where garbage has been dumped or nearly all-paved squares with meager or no vegetation at all. Such areas, when handled properly, play an important role in the city because in addition to being zones for rendering a mild climate they perform social, cultural and hygienic functions. Aiming at demonstrating that proper handling of green areas can favorably influence the local microclimate, we have attempted to develop analysis from the point of view of bioclimatizing attributes of urban form and their relationship to the local microclimate found in the eight open areas located in the Ponta Negra Housing Complex in the city of Natal/RN
Resumo:
The employment of flexibility in the design of façades makes them adaptable to adverse weather conditions, resulting in both minimization of environmental discomfort and improvement of energy efficiency. The present study highlights the potential of flexible façades as a resource to reduce rigidity and form repetition, which are usually employed in condominiums of standardized houses; as such, the work presented herein contributes to field of study of architectural projects strategies for adapting and integrating buildings within the local climate context. Two façade options were designed using as reference the bionics and the kinetics, as well as their applications to architectural constructions. This resulted in two lightweight and dynamic structures, which cater to constraints of comfort through combinations of movements, which control the impact of solar radiation and of cooling in the environment. The efficacy and technical functionality of the façades were tested with comfort analysis and graphic computation software, as well as with physical models. Thus, the current research contributes to the improvement of architectural solutions aimed at using passive energy strategies in order to offer both better quality for the users and for the sustainability of the planet