2 resultados para Artemia nauplii

em Repositório Institucional da Universidade Federal do Rio Grande do Norte


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the current study was to evaluate the zootechnical performance (survival and growth) of Litopenaeus vannamei post-Iarvae fed an artificial shrimp diet supplemented with Artemia flakes or freeze-dried Artemia embryos. For that purpose, 20 culturing units were individually stocked with 50 shrimp post-Iarvae (average dry weight of 0,3 ± 0,03 mg) at a stocking density of 20 post-larvae per liter, and fed the experimental diets to satiation during 20 days. The experimental design consisted of four diets (T1, T2, T3 and T4) with five repetitions each. For treatments T1, T2 and T3, dietary supplements of 5mg of Artemia flakes (T1), freeze-dried Artemia embryos (T2), and of the commercial shrimp diet (T3) were offered 2 hours after the shrimp were initially fed the commercial shrimp diet. For treatment T4 (control), no additive was offered 2 hours after the initial feeding. Shrimp survival, absolut (GPA) and relative increase in weight (GPR), and specific growth rate (TCR) were used as evaluation criteria. After the experimental period, no significant statistical differences (p>0,05) in survival were observed. Regarding growth, the dietary treatment which used freeze-dried Artemia embryos as an additive (T2) presented the best results for GPA (6,7 ± 0,7 mg). There were no statistical differences within treatments T1, T3 and T4 (p>0,05). AIso, post-larvae fed freeze-dried embryos (T2) showed a relative increase in weight (2241,4%) which differed significantly (p<0,05) from T4(1911,7%) but not from T1 (1801,6%) or T3 (1946,7%). In conclusion, the results of the current study indicate that an artificial shrimp diet supplemented with freeze-dried Artemia embryos fulfils the nutritional requirements of post-larvae L. vannamei and promotes a better growth than diets not supplemented with Artemia flakes

Relevância:

20.00% 20.00%

Publicador:

Resumo:

-D-glucosidase (EC 3.2.1.21) is one of the most interesting glycosidases, especially for hydrolysis cellobiose releasing glucose, is last step degradation of cellulose. This function makes the -D-glucosidase is of great interest as a versatile industrial biocatalyst, being critical to various bio-treatment / biorefinery processes, such as bioethanol production. Hen in the report, a -D-glucosidase was extracts from protein extracted of the invertebrate marine Artemia franciscana was purified and characterized with a combination of precipitation with ammonium sulfate (0 - 30%, 30 to 50%, 50 to 80%), the fraction saturated in the range of 30 to 50% (called F-II) was applied in a molecular exclusion chromatography, in Sephacryl S-200, the fractions corresponding to the first peak of activity of -D-glucosidase were gathered and applied in a chromatography of ion exchange in Mono Q; the third peak this protein obtained chromatography, which coincides with the peak of activity of -D-glucosidase was held and applied in a gel filtration chromatography Superose 12 where the first peak protein, which has activity of -D-glucosidase was rechromatography on Superose 12. This enzyme is probably multimerica, consisting of three subunit molecular mass of 52.7 kDa (determined by SDS-PAGE) with native molecular mass of 157 kDa (determined by gel filtration chromatography on Superose 12 under the system FPLC). The enzyme was purified 44.09 times with a recovery of 1.01%. Using up p-nitrophenyl-β-D-glucopiranoside as substrate obtained a Km apparent of 0.229 mM and a Vmax of 1.109 mM.60min-1.mL-1mM. The optimum pH and optimum temperature of catalysis of the synthetic substrate were 5.0 and 45 °C, respectively. The activity of the -D-glucosidase was strongly, inhibited by silver nitrate and N- etylmaleimide, this inhibition indicates the involvement of radical sulfidrila the hydrolysis of synthetic substrate. The -D-glucosidase of Artemia franciscana presented degradativa action on celobiose, lactose and on the synthetic substrate -nitrophenyl-β-D-glucopiranoside indicating potential use of this enzyme in the industry mainly for the production of bioethanol (production of alcohol from the participating cellulose), and production hydrolysate milk (devoid of milk lactose)