3 resultados para tempo de exposição
em Repositório Institucional da Universidade Federal do Rio Grande - FURG
Resumo:
Contaminantes orgânicos, como os hidrocarbonetos policíclicos aromáticos (HPAs), podem atingir corpos da água e possuem potencial para causar efeitos tóxicos em organismos. A exposição aos HPAs causa indução nos níveis de citocromo P450 1A (CYP1A) em peixes, e portanto, é utilizado como um biomarcador de contaminação ambiental. O guarú Phalloceros caudimaculatus ocorre naturalmente em ambientes aquáticos dulcícolas e mixohalinos na América do Sul. O presente estudo identificou a sequência nucleotídica do transcrito CYP1A de P. caudimaculatus, que codifica uma proteína com 521 aminoácidos, e que apresenta 91% e 70% de identidade com CYP1A de killifish e paulistinha, respectivamente. A partir desta sequência foi possível realizar a avaliação dos níveis de mRNA de CYP1A deste peixe por RTq-PCR. Foi realizada uma caracterização de sua indução órgão- e tempo-dependente frente a exposição ao HPA beta-naftoflavona (BNF) e ao elutriato preparado a partir de sedimento de dois corpos da água possivelmente contaminados com HPAs. Foi constatado um aumento significativo nos níveis de mRNA de CYP1A em fígado, brânquia, intestino, cérebro, nadadeira anal de macho adultos e em alevinos na primeira hora de exposição a 1 µM de BNF, em relação ao grupo controle. O rim e as nadadeiras caudal e dorsal apresentaram indução de CYP1A após duas horas de exposição ao BNF. As maiores induções nos peixes dos grupos expostos ao BNF em relação ao controle foram de 176 no rim e 122 vezes no cérebro, observadas respectivamente após 8 e 48 horas de exposição. Os níveis de mRNA de CYP1A nos órgãos e tecidos de alevino, mantiveramse induzidos pela exposição ao BNF até o final das 96 horas de exposição. A exposição dos peixes ao elutriato produzido a partir dos sedimentos coletados em dois locais potencialmente contaminados causou indução do CYP1A no fígado de 22 e 122 vezes em relação ao controle. Os resultados demonstram que a indução de CYP1A em Phalloceros caudimaculatus ocorre em tempos curtos de exposição, além da variação de acordo com o tempo de exposição e com o órgão analisado. Além disso, foi demonstrado que tecidos externos também podem ser utilizados para tais análises e que o elutriato feito a partir de sedimento de locais que recebem descargas de contaminantes podem causar indução de CYP1A nos organismos.
Resumo:
O metabolismo aeróbico é muito eficiente no processo de geração de energia, no entanto, é uma fonte de produção de espécies reativas de oxigênio (ERO). Para a prevenção dos efeitos potencialmente danosos dessas ERO, os organismos desenvolveram um sistema de defesa antioxidante (SDA), que inclui compostos enzimáticos e não enzimáticos. O ácido lipóico (AL) é uma molécula lipo e hidro solúvel, com capacidade de atravessar membranas celulares. Ele possui propriedades antioxidantes, auxiliando na eliminação de ERO, induzindo a expressão de genes importantes nas defesas antioxidantes, quelando metais e interagindo com outros antioxidantes. Trabalhos prévios demonstraram que nanocápsulas poliméricas de ácido lipóico favoreceram a proteção deste antioxidante, aumentando sua estabilidade físico- química em comparação com formulações contendo ácido lipóico livre. O objetivo deste estudo foi avaliar e comparar o efeito do AL livre e do AL em nanocápsulas sobre a atividade de enzimas antioxidantes (glutamato-cisteína ligase, GCL e glutationa-S- transferase, GST), a concentração de glutationa reduzida (GSH) e sub-produtos da peroxidação lipídica (malondealdeído, método TBARS) e da expressão de genes que codificam para as diferentes formas da enzima GST (alfa e pi). Para isso o peixe Cyprinus carpio (Cyprinidae) foi exposto a uma dose de 40 mg/kg a diferentes formas de AL (livre e em nanocápsulas) por injeção intraperitoneal (duas injeções, sendo a primeira no tempo 0 e a segunda após 24 h), sendo logo sacrificados a diferentes tempos da primeira injeção (48 h, 96 h e uma semana), sendo dissecados o cérebro, fígado e músculo dos peixes de cada tratamento. Os resultados obtidos indicam que os órgãos respondem de forma diferente. A curto prazo, o fígado foi o principal órgão a apresentar respostas antioxidantes após tratamento com AL, enquanto que a longo prazo o cérebro e o músculo se mostraram mais responsivos em termos antioxidantes quando 6 comparado ao fígado. Foi também importante a forma em que o AL é administrado, livre ou em nanocápsulas, sendo observado que um mesmo órgão em um mesmo tempo de exposição pode responder de forma diferente de acordo com o tipo de AL que está sendo utilizado. Além disso, o efeito antioxidante do AL nanoencapsulado parece ser mais efetivo quando utilizado a longo prazo, sugerindo que a forma nanoencapsulada libera o antioxidante em forma mais lenta. Os resultados também indicam que a composição da nanocápsulas deve ser levada em consideração, uma vez que foi observado um efeito antioxidante significativo nos tratamentos que continham apenas a nanocápsulas, sem o AL. Sugere-se que este efeito ocorra devido à produção endógena do próprio antioxidante em questão, favorecida pela composição da própria nanocápsula, que possui ácido octanóico, substrato para a síntese de AL. Também se observou um efeito pró-oxidante em alguns tratamentos onde foi utilizada esta formulação, sugerindo que alguns componentes da nanocápsula, como por exemplo, o surfactante que é utilizado para estabilizar a suspensão, possam aumentar a suscetibilidade dos órgãos ao estresse oxidativo.
Resumo:
As Microcistinas são heptapeptídios cíclicos produzidos como metabólitos secundários por diferentes espécies de cianobactérias, sendo relevantes pelo seu potencial hepatotóxico. Peixes apresentam estratégias bioquímicas para detoxificar contaminantes ambientais, incluindo a ativação de enzimas de fase II de biotransformação, que incluem as isoformas de glutationa S-transferase (GST). As GST catalizam a conjugação de glutationa reduzida (GSH) com uma variedade de xenobióticos, incluindo as microcistinas. O presente estudo avaliou os níveis transcricionais de quinze isoformas de GST a fim de identificar isoformas possivelmente envolvidas na detoxificação de contaminantes ambientais como a microcistina-LR (MC-LR) em Danio rerio. A técnica de PCR em tempo real (RT-qPCR) foi utilizada para avaliação dos níveis transcricionais, permitindo análise das GST em diferentes órgãos, abundância e a ativação/repressão das isoformas de GST pela exposição à MC-LR. Foram avaliados os possíveis efeitos causados em brânquia e fígado após exposição por 24 hs às concentrações de 5 µg.L-1 e 50 µg.L-1 de MC-LR. Baseado nos scores de estabilidade para oito genes normalizadores, foram selecionados glicose-6-fosfato desidrogenase (g6pdh), β-actina1 e beta-2-microglobulina (b2m); b2m, alfa-tubulina 1 (tuba) e β- actin1; e tuba, b2m e g6pdh, para normalização dos níveis trancricionais de GST para distribuição órgão-específica, abundância e efeito da MC-LR em brânquia e fígado, respectivamente. A avaliação transcricional da distribuição órgão-específica revelou níveis significativos de gstal e gstk1.1 no fígado; gstp1 e gstp2 em brânquia; mgst3a, gstr1, gstm2, gstm33, gstp1, gstp2 e gstk1.1 no intestino; gstm2, gstm3 e gstal no olho e gstt1a e gsta2.1 no cérebro. Considerando os níveis de transcritos para um dado órgão, gstk1.1, gstal, gstp1 e gstt2 foram mais abundantes nos órgãos de detoxificação, tais como o fígado, brânquias e intestino, enquanto gstt1a e gsta2.1 foram mais abundantes no rim. Em brânquia, gsta2.1 e gstt1b foram reprimidas por 5 µg.L-1 de MC-LR e mgst1.1 foi reprimida em 50 µg.L-1 de MC-LR. No fígado, as isoformas gst2.2 e gstp2 foram reprimidas em ambas as concentrações, gstal foi reprimida em 5 µg.L-1, e gstt1a e gstk1.1 foram reprimidas em 50 µg.L-1 de MC-LR. As isoformas gstal, gstr1, gstp1, mgst3a, gstm1, gstm2 e gstm3 não foram alteradas pela exposição a MC-LR. Os resultados obtidos fornecem informações para a escolha de isoformas específicas de GST possivelmente envolvidas na detoxificação/toxicidade de MC-LR, a serem melhores caracterizadas ao nível protéico e também contribui para a escolha de genes normalizadores a serem utilizados em outros estudos da mesma natureza