2 resultados para phytoplankton composition

em Repositório Institucional da Universidade Federal do Rio Grande - FURG


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Seasonal and interannual changes (1993e2012) of water temperature and transparency, river discharge, salinity, water quality properties, chlorophyll a (chl-a) and the carbon biomass of the main taxonomical phytoplankton groups were evaluated at a shallow station (~2 m) in the subtropical Patos Lagoon Estuary (PLE), Brazil. Large variations in salinity (0e35), due to a complex balance between Patos Lagoon outflow and oceanic inflows, affected significantly other water quality variables and phytoplankton dynamics, masking seasonal and interannual variability. Therefore, salinity effect was filtered out by means of a Generalized Additive Model (GAM). River discharge and salinity had a significant negative relation, with river discharge being highest and salinity lowest during July to October. Diatoms comprised the dominant phytoplankton group, contributing substantially to the seasonal cycle of chl-a showing higher values in austral spring/summer (September to April) and lowest in autumn/winter (May to August). PLE is a nutrient-rich estuary and the phytoplankton seasonal cycle was largely driven by light availability, with few exceptions in winter. Most variables exhibited large interannual variability. When varying salinity effect was accounted for, chl-a concentration and diatom biomass showed less irregularity over time, and significant increasing trends emerged for dinoflagellates and cyanobacteria. Long-term changes in phytoplankton and water quality were strongly related to variations in salinity, largely driven by freshwater discharge influenced by climatic variability, most pronounced for ENSO events. However, the significant increasing trend of the N:P ratio indicates that important environmental changes related to anthropogenic effects are undergoing, in addition to the hydrology in the PLE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To understand the mechanisms that trigger changes in chlorophyll a and species composition in the phytoplankton of the surf-zone at Cassino Beach (RS), we performed two short nutrient-enrichment experiments (4–5 days each) during the summer and winter of 2010. Seawater was incubated under controlled conditions of temperature (summer 25± 3 °C, winter 18±1 °C), salinity (summer 28, winter 26) and irradiance (100 μmol m−2 s−1 ). Dissolved inorganic nutrients were added in various concentrations in the summer (silicate, Si; nitrate, N; phosphate, P) and winter (N, P) experiments. Samples were taken daily for cell counts and chlorophyll a analysis. In both experiments, chlorophyll a values and cell density showed a significant increase (mainly diatoms) in the treatments with nitrate addition, regardless of the proportion added. In the summer experiment, the largest chlorophyll a increase, approximately threefold (31.5 to 89.5 μg L−1 ), was observed in the NP treatment due to the growth of Asterionellopsis glacialis (Castracane) Round, Skeletonema tropicum Cleve, Thalassiosira sp. Cleve and Pseudo-nitzschia spp. Peragallo. The maximum growth was obtained in the SiNP treatment for S. tropicum (μ=0.7), Thalassiosira (μ= 1.9) and Pseudo-nitzschia (μ= 1.3) and in the SiN treatment for A. glacialis (μ= 1.0). In the winter experiment, the chlorophyll a content increased 4.2 and 5.5 times, respectively, in the N and NP treatments (maxima 38.8 μg L−1 and 31.5 μg L−1 ), where A. glacialis (μ= 1.7–1.9) and Cylindrotheca closterium (Ehrenberg) Reimann & J.C. Lewin (μ= 1.0–1.96) showed the highest amount of growth. These results indicate that nitrate is the most important nutrient controlling phytoplankton chlorophyll a at sandy Cassino Beach. However, the responses of different species to enrichment during the summer and winter indicated that other factors also played a role. A. glacialis, present during both seasons, presented the highest growth rate during the winter, whereas during the summer it was independent of nutrient enrichment but coincided with the lowest growth of S. tropicum. This finding suggested the occurrence of allelopathic interactions between these species. During the summer, multi-enrichment (SiNP) favoured the best growth of S. tropicum, Pseudo-nitzschia spp. and Thalassiosira sp. These results indicated that the phytoplankton composition and diversity in the surf zone of Cassino Beach are shaped by the availability of silicate and phosphorus as well as by the availability of nitrate.