9 resultados para partição da digestão
em Repositório Institucional da Universidade Federal do Rio Grande - FURG
Resumo:
Aplicações de microalgas tem tornado esses micro-organismos importantes em pesquisas com fins tanto comerciais como energéticos. A biofixação de CO2 por microalgas é vista como uma forma economicamente viável e ambientalmente sustentável para mitigar as emissões de CO2 e geração de biomassa para obtenção de bioprodutos de alto valor agregado como os biocombustíveis. Na digestão anaeróbia da biomassa de microalgas a adição de um cosubstrato rico em carbono pode facilitar o processo de produção de biogás. O glicerol possui alta concentração de carbono orgânico e é solúvel em água. Neste sentido, a combinação de ambos os substratos pode solucionar um dos principais problemas para o processo de digestão, que reside no equilíbrio da razão (C/N). Co-digestão anaeróbia consiste na digestão anaeróbia de uma mistura de dois ou mais substratos com composições complementares. O objetivo do estudo foi avaliar a geração de biogás através da co-digestão anaeróbia de biomassa de Spirulina sp. LEB 18 e glicerol bruto. Para a realização do estudo foram construídos e operados sete biorreatores com volume útil de 1,5 L, alimentados com 5, 6, 10, 15 e 20 g.L -1 da mistura de biomassa de Spirulina e glicerol. A adição de diferentes quantidades de glicerol (5 e 10 g.L -1 ) foi utilizada como um suplemento na digestão anaeróbia em sistema de batelada. A razão C/N variou de 3,3×103 a 23,7. Os ensaios foram realizados a 35 °C, em reatores equipados com sistema de coleta de gás, alimentação e retirada do efluente líquido, operados em batelada sequencial. O efluente líquido dos reatores foi analisado quanto ao pH, nitrogênio amoniacal e alcalinidade. O volume de biogás produzido diariamente foi medido em gasômetro de frasco invertido. Em todos os ensaios, os valores médios de pH variaram de 7,0 a 7,3 e nitrogênio amoniacal de 62,02 a 1100,99 mg.L-1 . A alcalinidade do efluente variou entre 1133,37 e 3578,98 mg.L-1 CaCO3. Em todos os ensaios com adição de glicerol houve incremento na produção específica de biogás (0,16 – 0,24 d -1 ) quando comparado ao ensaio em que somente biomassa microalgal era alimentada no processo (0,03 L.d-1 ), demonstrando ser esta uma alternativa interessante para a produção de biocombustível e concomitante agregação de valor ao glicerol residual da produção de biodiesel.
Resumo:
A Área de Proteção Ambiental da Lagoa Verde é composta por um mosaico de unidades ambientais. Entre elas, destaca-se um fragmento de mata de restinga que reúne características físicas e microclimáticas para o estudo de ecologia de briófitas. Este estudo teve por objetivo realizar o levantamento das espécies de briófitas; fornece novas ocorrências de briófitas para o Rio Grande do Sul; avaliar a influência dos gradientes longitudinal e vertical na distribuição de briófitas; quantificar a variação da diversidade de briófitas nos gradientes longitudinal e vertical. Foram identificadas 51 espécies de briófitas como novas ocorrências para o Rio Grande do Sul, sendo 11 musgos e 40 hepáticas. Além do local de estudo foram identificadas espécies que estavam no herbário SP. No estudo dos gradientes longitudinal e vertical foram identificadas 53 espécies de briófitas, sendo 17 musgos e 36 hepáticas. Através da análise dos transectos e da inclusão dos forófitos subdivididos em três zonas de altura, foram coletadas amostras terrícolas e corticícolas. As briófitas respondem aos gradientes, através dos fatores microclimáticos (luminosidade e umidade), em relação ao aumento da riqueza e mudança na composição de espécies. A partição aditiva da diversidade de briófitas quantificou a variação da composição de espécies em cada gradiente. A diversidade entre cada nível dos gradientes longitudinal (umidade) e vertical (luminosidade) variou em torno de 40% e 50%, respectivamente. Em conclusão, o estudo sobre a ecologia de briófitas gerou conhecimento sobre a diversidade e biogeografia das espécies; contribuiu para o entendimento da distribuição das briófitas em função dos gradientes longitudinal e vertical, por influência de fatores microclimáticos e; revelou a variação da composição de espécies em função dos gradientes horizontal (umidade) e vertical (luminosidade).
Resumo:
A ocratoxina A é um composto formado a partir do metabolismo secundário de fungos dos gêneros Aspergillus e Penicillium. Uma vez que a presença dessa micotoxina nos alimentos causa sérios danos à saúde humana e animal, surge o interesse pelo desenvolvimento de métodos que visem a redução dos seus níveis em diferentes matrizes. Diversos processos de descontaminação têm sido propostos, sendo que os métodos de redução biológica tem recebido destaque. Esses métodos consistem na aplicação de micro-organismos ou de suas enzimas, o que gera a biotransformação ou degradação da toxina produzindo metabólitos com menor ou nenhuma toxicidade. Diante disso, o objetivo geral do trabalho foi avaliar o efeito da peroxidase na redução dos níveis de ocratoxina A. As enzimas peroxidases testadas foram a comercial e a obtida do farelo de arroz. Para a extração enzimática foram utilizadas as frações granulométricas do farelo de arroz de 48 a 100 mesh, sendo estas frações caracterizadas quimicamente. A peroxidase foi extraída do farelo de arroz em tampão 10 mM pH 5,0 e purificada por partição trifásica, obtendo 77,1% de recuperação e 9,2 para o fator de purificação. O método utilizado para a extração da ocratoxina A do sistema aquoso foi por partição líquido-líquido utilizando como solvente o clorofórmio, sendo esse método validado segundo os parâmetros de linearidade (0,1 a 20 ng mL-1), coeficientes de correlação (0,9997) e de determinação (0,9994), e limites de detecção (0,02) e quantificação (0,03). A afinidade entre as peroxidases e a ocratoxina A foi verificada segundo os parâmetros de KM e Vmáx, resultando em 0,00027 mM e 0,000015 mM min-1, respectivamente, para a peroxidase comercial, e 0,0065 mM e 0,000031 mM min-1 para a obtida do farelo de arroz. Com relação aos percentuais de redução de ocratoxina A, foram avaliadas 3 proporções enzima:substrato (1:10, 1:5 e 8:1 para a comercial e 1:10, 1:5 e a com atividade de 0,063 U mL-1 para a do farelo), sendo que as proporções que forneceram maior redução foi a de 8:1 para a enzima comercial (0,063 U mL-1) e a correspondente a 0,063 U mL-1 para a enzima obtida do farelo. Os percentuais de redução de ocratoxina A foram de 59% para a peroxidase comercial em 300 min e 41% para a peroxidase do farelo de arroz em 1440 min. O efeito de adsorção da ocratoxina A pela enzima peroxidase foi descartado uma vez que foi realizada a sua hidrólise com a enzima pepsina e verificado um percentual de 2,7% de adsorção, demonstrando que a redução foi por ação enzimática. A enzima obtida de farelo de arroz com atividade de 0,063 U mL-1 foi aplicada em suco de uva tinto e branco. Observou-se que para o primeiro não houve redução significativa, enquanto que para o segundo a redução foi de 17%. Neste trabalho, então, foi possível verificar a capacidade de redução dos níveis da ocratoxina A pela enzima peroxidase, tanto em sistema aquoso como no suco de uva integral branco.
Resumo:
O crescimento da população mundial e a tentativa de substituição parcial dos combustíveis fósseis por novas fontes de energia têm levado a uma maior atenção quanto à possível escassez de alimentos e a carência de grandes áreas disponíveis para agricultura. Microalgas, por meio do metabolismo fotossintético, utilizam energia solar e gás carbônico como nutrientes para o crescimento. A microalga Spirulina pode ser utilizada como suplemento alimentar, na biofixação de CO2, como fonte de biocombustíveis e no tratamento de efluentes. A digestão anaeróbia da biomassa microalgal produz biogás e os resíduos deste processo podem ser utilizados como substrato para novos cultivos da microalga. O objetivo deste trabalho foi estudar a conversão de Spirulina sp. LEB-18 em biogás em escala piloto e produzir biomassa microalgal utilizando os efluentes bicarbonato e dióxido de carbono do processo anaeróbio como fonte de nutrientes. Spirulina foi utilizada como substrato na digestão anaeróbia para produção de biogás em escala piloto sob temperaturas variáveis (12- 38 °C). Efluente do processo anaeróbio foi adicionado (20 %, v/v) como fonte de carbono no cultivo da microalga para avaliar o crescimento e a composição da biomassa. A seguir foi avaliada a capacidade da microalga de remover CO2 presente no biogás através de biofixação para obtenção do biocombustível purificado. O biogás produzido sob as diferentes temperaturas apresentou entre 72,2 e 74,4 % de CH4, quando realizado nas temperaturas 12 a 21 °C e 26 a 38 °C, respectivamente. A redução na temperatura do processo anaeróbio provocou um decréscimo na conversão de biomassa em biogás (0,30 para 0,22 g.g-1 ), ocorrendo dentro da faixa adequada e segura para as bactérias metanogênicas (pH 6,9; alcalinidade entre 1706,0 e 2248,0 mg.L-1 CaCO3 e nitrogênio amoniacal 479,3 a 661,7 mg.L-1 ). Os cultivos de Spirulina sp. LEB-18 em efluente anaeróbio contendo 20 % (v/v) e meio Zarrouk modificado (NaHCO3 2,8 e 5,3 g.L-1 ) apresentaram velocidade específica máxima de crescimento entre 0,324 e 0,354 d-1 , produtividade volumétrica entre 0,280 e 0,297 g.L-1 .d-1 e produtividade areal entre 14,00 e 14,85 g.m-2 .d-1 , sem diferenças significativas (p > 0,05) entre as diferentes condições estudadas. Lipídios variaram entre 4,9 e 5,0 % com proporção de ácido linoleico maximizada nos meios com efluente e ácido alfa-linolênico reduzida nesses meios em comparação ao meio Zarrouk completo. Nos ensaios para avaliar a capacidade da microalga Spirulina sp. LEB-18 de remover CO2 contaminante no biogás, as máximas concentrações celulares e produtividades de biomassa variaram, respectivamente, entre 1,12 e 1,24 g.L-1 e 0,11 e 0,14 g.L-1 .d-1 , não apresentando diferenças significativas (p > 0,05) entre os ensaios. A maior fixação diária total (FDT) de dióxido de carbono obtida foi 58,01 % (v/v) em cultivos com adição de biogás contendo 25 % (v/v) CO2. Obteve-se biogás com 89,5 % (v/v) de CH4 após injeção em cultivos de Spirulina, no qual aproximadamente 45 % (v/v) do CO2 injetado foi fixado pela microalga, gerando biomassa para diversas aplicações e biogás purificado.
Resumo:
C-ficocianina (C-FC) é uma ficobiliproteína, de cor natural azul, com diversas aplicações na indústria alimentícia, farmacêutica e biomédica, dependendo do seu grau específico de pureza, que pode variar de 0,7 a 4,0, com respectivo aumento de seu valor comercial. Essa pureza é alcançada através de diversas técnicas de purificação, que podem ser aplicadas em diferentes sequências. Um destes processos de purificação de proteínas baseia-se na cromatografia de troca iônica, que utiliza trocadores que adsorvem as proteínas como resultado de interações iônicas entre a superfície da proteína e o trocador. Resinas e colunas de leito expandido podem ser utilizadas para aumentar a produtividade dessa técnica. É fundamental conhecer o perfil do processo de adsorção, para melhor aplicá-lo como ferramenta para o design e otimização de parâmetros operacionais. Outra tecnologia para o tratamento de biomoléculas é a ultrafiltração. Esta técnica é aplicável em larga escala, apresenta baixa complexidade de aplicação e pode ser realizada em condições brandas, minimizando o dano para o produto. Para aumentar a estabilidade da C-FC, e facilitar a sua aplicação, podem ser avaliadas técnicas recentes, não exploradas para este fim, como as nanofibras obtidas através do processo de electrospinning. Estas fibras possuem uma área superficial específica extremamente elevada devido a seu pequeno diâmetro. O objetivo deste trabalho foi avaliar parâmetros de adsorção e diferentes técnicas para purificação de C-ficocianina de Spirulina platensis e obter nanofibras poliméricas incorporadas de C-ficocianina. O trabalho foi dividido em quatro artigos. No primeiro artigo, foram avaliados os parâmetros e as isotermas de adsorção de C-ficocianina em resina de troca iônica para leito expandido Streamline® DEAE. Verificou-se que o maior coeficiente de partição foi obtido em pH 7,5, nas temperaturas de 15 e 25 °C. As isotermas de adsorção da Cficocianina foram bem representadas pelos modelos de Langmuir, de Freundlich e de Langmuir-Freundlich, sendo os valores estimados para Qm e Kd obtidos pela isoterma de Langmuir foram, respectivamente, 33,92 mg.mL-1 e 0,123 mg.mL-1, respectivamente. No segundo artigo foi avaliada a purificação de C-FC até grau alimentar, utilizando ultrafiltração (UF). Com a membrana de 50 kDa, identificou-se que somente a temperatura e a aplicação de diferentes ciclos de diafiltração (DF) causaram influência significativa sobre a purificação e recuperação da C-ficocianina. Foram então aplicados o aumento gradativo da quantidade de ciclos, e a diafiltração previamente à ultrafiltração (DF/UF), onde obteve-se um extrato de Cficocianina com pureza de 0,95. No terceiro artigo foram propostos processos de purificação, envolvendo a utilização das diferentes técnicas para obtenção de C-FC com diferentes purezas. Determinou-se que a partir de cromatografia de troca iônica em leito fixo seguido de DF/UF, obtém-se C-FC para uso em cosméticos e a partir de precipitação com sulfato de amônio, e DF/UF obtém-se C-FC para uso em biomarcadores. Com uma sequência de precipitação com sulfato de amônio, DF/UF e cromatografia de troca iônica em leito fixo chega-se a C-FC de grau analítico. No último artigo, C-FC foi incorporada a nanofibras de óxido de polietileno (PEO) através de processo de electrospinning. Foram determinadas a condutividade da solução de C-FC/PEO, a estrutura e comportamento termogravimétrico das nanofibras formadas. Soluções de polímeros com concentração de 6 e 8% proporcionaram a formação de nanofibras com diâmetro médio inferior a 800 nm, homogêneas, sem a presença de gotas. A análise termogravimétrica identificou aumento na resistência térmica da C-FC incorporada nas fibras.
Resumo:
Pesquisas com microalgas estão crescendo devido aos possíveis bioprodutos oriundos de sua biomassa, bem como as suas diferentes aplicabilidades. Microalgas podem ser cultivadas para a produção de biopolímeros com características de biocompatibilidade e biodegradabilidade. Nanofibras produzidas por electrospinning a partir de poli-β-hidroxibutirato (PHB) geram produtos com aplicabilidade na área de alimentos e médica. O objetivo deste trabalho foi selecionar microalgas com maior potencial para síntese de biopolímeros, em diferentes meios de cultivo, bem como purificar poli-β-hidroxibutirato e desenvolver nanofibras. Este trabalho foi dividido em cinco artigos: (1) Seleção de microalgas produtoras de biopolímeros; (2) Produção de biopolímeros pela microalga Spirulina sp. LEB 18 em cultivo com diferentes fontes de carbono e redução de nitrogênio; (3) Síntese de biopolímeros pela microalga Spirulina sp. LEB 18 em cultivos autotróficos e mixotróficos; (4) Purificação de poli-β- hidroxibutirato extraído da microalga Spirulina sp. LEB 18; e (5) Produção de nanofibras a partir de poli-β-hidroxibutirato de origem microalgal. Foram estudadas as microalgas Cyanobium sp., Nostoc ellipsosporum, Spirulina sp. LEB 18 e Synechococcus nidulans. Os biopolímeros foram extraídos nos tempos de 5, 10, 15, 20 e 25 d de cultivo a partir de digestão diferencial. Para os experimentos com diferentes nutrientes, foi utilizado como fonte de carbono, bicarbonato de sódio, acetato de sódio, glicose e glicerina modificando-se as concentrações de nitrogênio e fósforo. Os cultivos foram realizados em fotobiorreatores fechados de 2 L. A concentração inicial de inóculo foi 0,15 g.L-1 e os ensaios foram mantidos em estufa termostatizada a 30 ºC com iluminância de 41,6 µmolfótons.m -2 .s -1 e fotoperíodo 12 h claro/escuro. Para a purificação de PHB, foi utilizada a biomassa da cianobactéria Spirulina sp. LEB 18, cultivada em meio Zarrouk. Após a extração do biopolímero bruto, a amostra foi desengordurada com hexano e purificada com 1,2-carbonato de propileno. Foram determinadas as purezas e as propriedades térmicas no PHB purificado. O biopolímero utilizado para produzir as nanofibras apresentava 70 % de pureza. A técnica para produção de nanofibras foi o electrospinning. As microalgas que apresentaram máxima produtividade foram Nostoc ellipsosporum e Spirulina sp. LEB 18 com rendimento de biopolímero 19,27 e 20,62 % em 10 e 15 d, respectivamente, na fase de máximo crescimento celular. O maior rendimento de biopolímeros (54,48 %) foi obtido quando se utilizou 8,4 g.L-1 de NaHCO3, 0,05 g.L-1 de NaNO3 e 0,1 g.L-1 de K2HPO4. A condição que proporcionou maior pureza do PHB foi a 130 ºC e 5 min de contato entre o solvente (1,2-carbonato de propileno) e o PHB. As análises térmicas para todas as amostras foram semelhantes em relação ao PHB padrão (Sigma-Aldrich). A purificação com 1,2-carbonato de propileno foi eficiente para o PHB extraído de microalga, alcançando pureza acima de 90 %. A condição que apresentou menores diâmetros de nanofibras foi ao utilizar solução contendo 20 % de biopolímero solubilizado em clorofórmio. As condições do electrospinning que apresentou nanofibras com diâmetros de 470 e 537 nm foram, vazão 150 µL.h-1 , diâmetro do capilar 0,45 mm e voltagens entre 24,1 e 29,6 kV, respectivamente. A microalga Spirulina sp. LEB 18 produz PHB ao utilizar menores concentrações de nutrientes no meio de cultivo, que pode ser purificado com 1,2-carbonato de propileno. Este biopolímero possui aplicabilidade para produção de nanofibras.
Resumo:
Neste trabalho é proposto pela primeira vez, o desenvolvimento e validação de um método analítico baseado no emprego da dispersão da matriz em fase sólida (MSPD) modificada, para extração das espécies CH3Hg+ e Hg2+ em amostras de peixe e determinação por cromatografia em fase gasosa acoplada à espectrometria de massas (GC-MS). O método de extração utilizando a MSPD combina o rompimento da estrutura física da amostra, através da maceração e do uso de SiO2 como suporte sólido, com o método da extração ácida, utilizando uma solução de HCl 4,2 mol L-1 e NaCl 0,5 mol L-1. Para otimização da MSPD, foram avaliados parâmetros como massa de amostra, massa de suporte sólido, concentração de HCl, concentração de NaCl, tipo de suporte sólido e o tempo de agitação, com auxílio da metodologia de superfície de resposta. Além disso, a etapa de derivatização e a separação cromatográfica também foram otimizadas na determinação de CH3Hg+ e Hg2+ por GC-MS. O método mostrouse adequado para extração e determinação de espécies de mercúrio através da aplicação em materiais de referência certificados de fígado de peixe (DOLT-3) e músculo de peixe (DORM-2), apresentando boas concordâncias com os valores certificados e desvio padrão relativo inferior a 9,5%. Os limites de detecção foram de 0,06 e 0,12 µg g-1 para CH3Hg+ e Hg2+, respectivamente. Além disso, foi observado um significativo efeito de matriz e, por isso, a calibração foi feita com curvas preparadas com o extrato da MSPD. O método mostrou boa concordância na comparação entre a soma da concentração das espécies e a concentração de mercúrio total determinada por espectrometria de massas com plasma indutivamente acoplado com geração de vapor frio (CVG-ICP-MS), após digestão assistida por micro-ondas (MAD) em peixes do tipo atum (Thunnus thynnus), cação anjo (Squatina squatina) e cação viola (Rhinobatos blochii.).
Resumo:
O cultivo do arroz no RS é fortemente relacionado com recursos hídricos, pois este se faz sob irrigação e durante o beneficiamento, especialmente no caso da parboilização, são necessários volumes consideráveis de água. Em vista disso, os solutos presentes nestas águas permitem estimar o impacto desta cultura e sua industrialização na qualidade do ambiente hídrico no RS. Foi desenvolvida uma rotina analítica para caracterização físico-química das águas da cadeia produtiva do arroz, onde foram analisados nitrogênio total, nitrogênio amoniacal, nitrogênio orgânico, açucares redutores, açucares redutores totais, sólidos totais, sólidos fixos, sólidos voláteis, ácidos voláteis, alcalinidade, pH, nitrato, nitrito e fósforo. Também um método multimicotoxinas foi desenvolvido avaliando a eficiência de cinco sistemas de extração-partição para aflatoxina B1 (AFA B1), aflatoxina B2 (AFA B2), ocratoxina A (OTA), zearalenona (ZEA) e deoxinivalenol (DON). A partição liquido-liquido com clorofórmio foi a mais eficiente recuperando 89; 96; 89; 97 e 72%, respectivamente de cada micotoxina. A comparação entre volumes de solventes, onde o número de etapas envolvidas e o tempo necessário para efetuar a determinação confirmaram a simplicidade, a economia e a rapidez deste sistema de partição a ser adotado para extrair micotoxinas de água da cadeia produtiva de arroz. O método foi aplicado para determinação de micotoxinas em amostras de águas de irrigação e parboilização de arroz de diferentes procedências verificando-se que as últimas aparecem contaminadas com micotoxinas, AFA B1 9,0 ng mL-1 e DON 110 ng mL-1 . Foi realizado também um estudo de migração de micotoxinas AFA B1, OTA, ZEA e DON e outros solutos sob condições de encharcamento (4 e 6 h) em dois níveis de fortificação, durante a parboilização do grão ficando demonstrado que durante o processo ocorria a lixiviação de solutos e micotoxinas para água de encharcamento do arroz.
Resumo:
Deoxinivalenol (DON), uma das principais micotoxinas encontradas em matrizes alimentares, é um composto químico que possui em sua estrutura um anel epóxido que lhe confere alto grau de toxicidade. A aplicação de enzimas em processos de degradação de DON vem se destacando, pela estabilidade durante o processo reacional e baixo custo de produção. O objetivo desse trabalho foi estudar o potencial de peroxidase proveniente de farelo de arroz (FA) e farelo de soja (FS) para degradar DON. As condições de obtenção da PO a partir de FA foram definidas por planejamento experimental DCCR 23 , sendo extraída de 5 g de farelo com 50 mL de tampão fosfato 0,04 mol L-1 pH 5, agitados orbitalmente durante 60 min a 100 rpm, e para a PO obtida de FS as condições diferenciaram somente quanto a solução extratora, tampão fosfato 0,01 mol L-1 pH 4,7. A técnica que apresentou melhores índices de purificação para a enzima foi a partição trifásica apresentando fator de purificação e recuperação de 5,6 e 50 % para a obtida de FA e 13,61 e 50 % para FS. A PO de FA apresentou maior atividade em tampão fosfato 5 mmol L-1 pH 5,5 para as formas bruta e pura, diferindo na temperatura de reação de 25 °C e 10 °C, KM de 0,15 e 0,06 mmol L-1 e Vmáx de 769 e 667 U mg-1 , respectivamente. A PO de FS as condições foram: tampão fosfato 5 mmol L-1 pH 5, reação a 35 e 30 °C durante 10 e 5 min, KM de 0,17 e 0,05 mmol L-1 e Vmáx de 196 e 182 U mg-1 , respectivamente. A PO de FA demonstrou maior estabilidade em pH 5 enquanto que a de FS em pH 6, ambas enzimas apresentaram maior estabilidade térmica a 0 °C, as massas moleculares encontradas por eletroforese foram 41 e 34 kDa, respectivamente. Ao final das etapas de obtenção, purificação e caracterização obteve-se uma atividade específica de 116 e 794 U.mg-1 , e 4363 e 17453 U g-1 , respectivamente para PO de FA e FS. A determinação de DON e De-DON foi realizada por HPLC-DAD e LC-ESI-MS/MS para avaliação dos ensaios de degradação. A enzima comercial HRP, mostrou maior potencial de redução sobre DON (55% após 1 h de reação), no entanto em 3 h de reação, a concentração inicial da micotoxina DON foi verificada, o que evidencia que a redução pode ocorrer por adsorção ou por formação de um composto de degradação que apresente a mesma massa molecular. O emprego da enzima PO obtida de FA e FS na degradação necessita de uma avaliação cinética micotoxicologica para definição das condições de redução significativa dos níveis de DON.