2 resultados para environmental problems

em Repositório Institucional da Universidade Federal do Rio Grande - FURG


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nas últimas duas décadas, o descarte e o acúmulo de embalagens não biodegradáveis têm agravado os problemas ambientais. Uma das soluções encontradas, particularmente na área de embalagens de alimentos, é o desenvolvimento de filmes a partir de polímeros que possam substituir os materiais sintéticos. Fontes alternativas de proteína, como os resíduos de pescados, tornam-se importante, pois estes representam de 60 a 70% da matéria-prima e são descartados pelas indústrias de filetagem contribuindo com os danos ao meio ambiente. As propriedades funcionais dos filmes biodegradáveis são resultantes das características das macromoléculas utilizadas, das interações entre os constituintes envolvidos na formulação (macromolécula, solvente, plastificante e outros aditivos), dos parâmetros de fabricação (temperatura, tipo de solvente, pH, entre outras), do processo de dispersão da solução filmogênica (pulverização, espalhamento, etc.) e das condições de secagem. Um problema limitante no uso de filmes biodegradáveis a base de proteínas de pescado é a sua susceptibilidade à umidade, devido à hidrofilicidade dos aminoácidos das moléculas de proteína. O objetivo geral do trabalho foi desenvolver e caracterizar filmes a base de isolado proteico de resídeos de corvina (IPC) e óleo de palma (OP). O desenvolvimento dos filmes foi estudado em duas etapas. Neste estudo utilizou-se resíduos de corvina (Micropogonias furnieri) para a obtenção do isolado protéico, glicerol como plastificante e óleo de palma para conferir hidrofobicidade ao filme. Na primeira etapa, o objetivo foi investigar o efeito das concentrações de IPC, de glicerol e do pH sobre as propriedades dos filmes de proteína de resíduos de corvina (Micropogonias furnieri). Os filmes foram avaliados quanto aos parâmetros de cor, opacidade, propriedades mecânicas, espessura, solubilidade em água, permeabilidade de vapor de água (PVA) e propriedades morfológicas. Como resultado foi observado que a opacidade e a luminosidade dos filmes não foram afetados pelas variáveis do processo. Os filmes de IPC ficaram amarelados e opacos. Apresentaramse mais claros quando elaborados com baixas concentrações de IPC e altas concentrações de glicerol nas soluções filmogênicas. A menor solubilidade em água ocorreu nos filmes com pH baixo e menores concentrações de glicerol. Com relação as propriedades mecânicas, os filmes apresentaram alta elongação e sua resistência à tração aumentou quando utilizadas maiores concentrações de IPC, menores concentrações de glicerol e pHs mais baixos.Os filmes apresentaram superficies ásperas e irregulares. Na segunda etapa foram elaborados filmes biodegradáveis de IPC contendo diferentes concentrações de óleo de palma (OP) (10 e 20 g de OP /100g de IPC) e suas propriedades de barreira, mecânicas, físico-químicas, térmicas e morfológicas foram estudadas. A adição de OP aumentou as espessuras dos filmes com 2 e 4% de IPC, no entanto a solubilidade não foi afetada pela adição do OP. Os filmes com 3 e 4% de IPC ficaram menos permeáveis a água quando incorporado 20% de OP nos mesmos. A opacidade dos filmes aumentou com a adição do OP. A incorporação do OP nos filmes resultou em uma diminuição da resistência à tração e no aumento da elongação dos filmes. Nos filmes com 2% de IPC o aumento na elongação foi significativo apenas quando adicionado 20% de OP. O aparecimento de apenas uma temperatura de fusão nos filmes sugeriu uma homogeneidade dos mesmos. A decomposição térmica dos filmes iniciou em torno de 120 -173ºC. Os filmes apresentaram uma superfície descontínua.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pesquisas com microalgas estão crescendo devido aos possíveis bioprodutos oriundos de sua biomassa, bem como as suas diferentes aplicabilidades. Microalgas podem ser cultivadas para a produção de biopolímeros com características de biocompatibilidade e biodegradabilidade. Nanofibras produzidas por electrospinning a partir de poli-β-hidroxibutirato (PHB) geram produtos com aplicabilidade na área de alimentos e médica. O objetivo deste trabalho foi selecionar microalgas com maior potencial para síntese de biopolímeros, em diferentes meios de cultivo, bem como purificar poli-β-hidroxibutirato e desenvolver nanofibras. Este trabalho foi dividido em cinco artigos: (1) Seleção de microalgas produtoras de biopolímeros; (2) Produção de biopolímeros pela microalga Spirulina sp. LEB 18 em cultivo com diferentes fontes de carbono e redução de nitrogênio; (3) Síntese de biopolímeros pela microalga Spirulina sp. LEB 18 em cultivos autotróficos e mixotróficos; (4) Purificação de poli-β- hidroxibutirato extraído da microalga Spirulina sp. LEB 18; e (5) Produção de nanofibras a partir de poli-β-hidroxibutirato de origem microalgal. Foram estudadas as microalgas Cyanobium sp., Nostoc ellipsosporum, Spirulina sp. LEB 18 e Synechococcus nidulans. Os biopolímeros foram extraídos nos tempos de 5, 10, 15, 20 e 25 d de cultivo a partir de digestão diferencial. Para os experimentos com diferentes nutrientes, foi utilizado como fonte de carbono, bicarbonato de sódio, acetato de sódio, glicose e glicerina modificando-se as concentrações de nitrogênio e fósforo. Os cultivos foram realizados em fotobiorreatores fechados de 2 L. A concentração inicial de inóculo foi 0,15 g.L-1 e os ensaios foram mantidos em estufa termostatizada a 30 ºC com iluminância de 41,6 µmolfótons.m -2 .s -1 e fotoperíodo 12 h claro/escuro. Para a purificação de PHB, foi utilizada a biomassa da cianobactéria Spirulina sp. LEB 18, cultivada em meio Zarrouk. Após a extração do biopolímero bruto, a amostra foi desengordurada com hexano e purificada com 1,2-carbonato de propileno. Foram determinadas as purezas e as propriedades térmicas no PHB purificado. O biopolímero utilizado para produzir as nanofibras apresentava 70 % de pureza. A técnica para produção de nanofibras foi o electrospinning. As microalgas que apresentaram máxima produtividade foram Nostoc ellipsosporum e Spirulina sp. LEB 18 com rendimento de biopolímero 19,27 e 20,62 % em 10 e 15 d, respectivamente, na fase de máximo crescimento celular. O maior rendimento de biopolímeros (54,48 %) foi obtido quando se utilizou 8,4 g.L-1 de NaHCO3, 0,05 g.L-1 de NaNO3 e 0,1 g.L-1 de K2HPO4. A condição que proporcionou maior pureza do PHB foi a 130 ºC e 5 min de contato entre o solvente (1,2-carbonato de propileno) e o PHB. As análises térmicas para todas as amostras foram semelhantes em relação ao PHB padrão (Sigma-Aldrich). A purificação com 1,2-carbonato de propileno foi eficiente para o PHB extraído de microalga, alcançando pureza acima de 90 %. A condição que apresentou menores diâmetros de nanofibras foi ao utilizar solução contendo 20 % de biopolímero solubilizado em clorofórmio. As condições do electrospinning que apresentou nanofibras com diâmetros de 470 e 537 nm foram, vazão 150 µL.h-1 , diâmetro do capilar 0,45 mm e voltagens entre 24,1 e 29,6 kV, respectivamente. A microalga Spirulina sp. LEB 18 produz PHB ao utilizar menores concentrações de nutrientes no meio de cultivo, que pode ser purificado com 1,2-carbonato de propileno. Este biopolímero possui aplicabilidade para produção de nanofibras.