6 resultados para carbon source
em Repositório Institucional da Universidade Federal do Rio Grande - FURG
Resumo:
As microalgas podem ser consideradas como um dos mais eficientes sistemas biológicos de transformação de energia solar em compostos orgânicos. Quando cultivadas em meios adequados, certas espécies podem duplicar sua biomassa diariamente. Além disso, possuem inúmeras vantagens, como: elevada velocidade de crescimento; potencial para absorver CO2, reduzindo assim a quantidade de emissões deste gás na atmosfera e diminuindo o efeito estufa. O objetivo do trabalho foi estudar o efeito do uso de pentoses no cultivo de Chlorella minutissima, Chlorella vulgaris, Chlorella homosphaera, Dunaliella salina, Spirulina paracas e Synechococcus nidulans, avaliando o perfil cinético do crescimento e a capacidade de produção de carboidratos e proteínas. Para o cultivo das microalgas foram utilizados os meios: Zarrouk, Bristol`S Modificado e DUN. Em todos os meios o componente nitrogenado foi reduzido pela metade e utilizado 1%, 5%, 10%, 20% e 30% de pentoses, com concentrações de xilose e arabinose que representassem as mesmas presentes em caldo hidrolisado do bagaço de cana de açúcar pré-tratado. Os cultivos foram realizados em fotobiorreatores de 2 L, mantidos em estufa a 30 ºC, fotoperíodo de 12h claro/escuro e 2500 Lx, com agitação a uma vazão de 0,75 v.v.m. . O crescimento de biomassa foi monitorado diariamente pela densidade ótica das culturas em espectrofotômetro a 670nm. Foram avaliados parâmetros cinéticos como a concentração máxima de biomassa, produtividade máxima e velocidade específica máxima de crescimento. A determinação do consumo das pentoses foi realizada através da metodologia de Somogy e Nelson, para a determinação de carboidratos foi utilizada uma adaptação do método do ácido 3,5 dinitro salicílico, as proteínas foram quantificadas pelo método de micro-Kjeldahl. Todas as microalgas foram capazes de consumir em no máximo quatro dias as concentrações de pentoses, e logo após esta etapa mixotrófica manter-se em crescimento autotrófico, destacando-se as cepas de Dunaliella salina e Synechococcus nidulans que esgotaram as maiores concentrações utililizadas em dois dias de cultivo. Para as cianobactérias estudadas, Spirulina paracas cultivada com 10% de C5, foi a que obteve os melhores resultados de concentração celular, produtividade e velocidade específica de crescimento máxima, 1,364 g.L-1 , 0,128 g.L-1 .dia-1 e 0,240 dia-1 . Em relação ao efeito na composição da biomassa, Synechococcus nidulans produziu o maior teor de proteínas, 62,9%, nos ensaios com 10% de C5. Já as cepas de Chlorophytas os melhores resultados foram obtidos com o uso de 5% de C5, para os parâmetros cinéticos destacam-se os valores encontrados para Dunaliella salina, onde a maior concentração de biomassa, produtividade e velocidade específica de crescimento foram 1,246 g.L-1 , 0,091 g.L- 1 .dia-1 e 0,379 dia-1 , respectivamente. Chlorella minutissima e Dunaliella salina foram as melhores produtoras de carboidratos, alcançando 58,6%/0,3 g.L-1 e 23,07%/0,29 g.L-1 ,respecivamente. Logo, o uso de pentoses nas microalgas em substituição as fontes tradicionais de carbono, resultou no crescimento das mesmas, o que mostra que estas podem agir como intermediários para a absorção de açúcares de cinco carbonos.
Resumo:
A busca por combustíveis alternativos, tais como os biocombustíveis, torna-se necessária devido à crescente demanda por combustíveis em todos os setores da atividade humana, sendo que quase toda energia consumida no mundo provém do petróleo, uma fonte limitada, que emite grande quantidade de gases poluentes. Devido à grande diversidade de culturas oleoginosas no país, o Brasil demonstra potencial para substituição do diesel pelo biodiesel. No processo de obtenção deste, o óleo vegetal sofre uma transesterificação, sob a ação de um catalisador básico e na presença de um álcool, formando três moléculas de ésteres metílicos ou etílicos de ácidos graxos, que constituem o biodiesel em sua essência, liberando uma molécula de glicerol, que é o coproduto mais abundante desta reação. Sendo assim, a utilização do glicerol residual é uma ótima alternativa para agregar valor à cadeia produtiva do biodiesel, minimizar os danos de um possível descarte inadequado, além de diminuir os custos do processo. Com este intuito, este trabalho propõe o uso do glicerol residual como fonte de carbono para produção de exopolissacarídeos (EPSs). Para tal, foram utilizadas linhagens de bactérias mencionadas na literatura como produtoras de EPSs de importância comercial, sendo elas: Xanthomonas campestris pv. mangiferaeindicae IBSBF 1230, Pseudomonas oleovarans NRRL B-14683, Sphingomonas capsulata NRRL B-4261 e Zymomonas mobilis NRRL B-4286. Os cultivos foram realizados em meio apropriado para cada micro-organismo, e como fontes de carbono foram testadas a sacarose, o glicerol residual e uma mistura de ambos na proporção de 1:1 m/m. Os meios foram inoculados com suspensão da bactéria em estudo, sendo avaliados parâmetros relativos ao crescimento celular e à produção de EPSs. Para X. campestris pv. mangiferaeindicae, foram determinadas algumas propriedades reológicas e térmicas dos EPSs produzidos com as diferentes fontes de carbono, bem como o índice de emulsificação com diferentes óleos vegetais. X. campestris apresentou uma concentração de EPSs em torno de 4 g.L-1 em todos os meios estudados, comportamento similar ao da bactéria P. oleovorans, diferindo apenas no meio contendo sacarose (0,8 g.L-1 ). S. capsulata apresentou uma maior concentração de EPSs em meios contendo sacarose e a mistura de sacarose com glicerol residual, em torno de 3,4 g.L-1 , e em meio contendo glicerol residual este valor caiu para 1,7 g.L-1 . Já Z. mobilis apresentou um melhor resultado em meio contendo sacarose e glicerol residual, atingindo 1,3 g.L-1 , sendo que em meio contendo somente sacarose e glicerol residual estes valores foram inferiores alcançando 0,2 e 0,7 g.L-1 , respectivamente. Quase todas as bactérias atingiram a fase estacionária em 24 h de cultivo e o pH permaneceu praticamente constante, sendo verificada uma queda mais acentuada somente para Z. mobilis. O comportamento reológico foi similar para as xantanas produzidas nos diferentes meios, entretanto a viscosidade inicial foi maior com o meio a sacarose (637 cP), seguido da mistura de sacarose com glicerol residual (279 cP) e glicerol residual (60 cP). O IE24 foi superior quando utilizado o óleo de milho, atingindo valores de 97, 72 e 64 % em sacarose, mistura de sacarose com glicerol e glicerol residual, respectivamente. Desta forma, pode-se afirmar que a mudança na fonte de carbono afeta estas propriedades.
Resumo:
Há uma crescente procura por alimentos mais saudáveis e seguros para atender uma população cada vez maior e mais exigente. Nos últimos anos o interesse por surfactantes de origem microbiana tem aumentado significativamente em decorrência de serem naturalmente biodegradáveis diminuindo assim o impacto ambiental. Uma grande variedade de microorganismos produz biossurfactantes, sendo que o tipo, a quantidade e a qualidade do biossurfactante são influenciados pelos constituintes do meio, tais como, fontes de carbono, nitrogênio e sais inorgânicos, além das condições de cultivo, como pH, temperatura, agitação e disponibilidade de oxigênio. Os biossurfactantes são metabólitos microbianos de superfície ativa que apresentam uma vasta aplicação no setor industrial. Os objetivos deste trabalho foram selecionar microalgas com potencial para produzir biossurfactantes e estudar a produção por microalgas em diferentes fotobiorreatores e condições nutricionais. O trabalho foi dividido em quatro etapas: 1) cultivo autotrófico e mixotrófico de microalgas para produção de biossurfactantes; 2) Seleção de microalgas para produção de biossurfactantes; 3) Produção de biossurfactantes por microalgas em diferentes fotobiorreatores e 4) Cultivo outdoor da microalga marinha Tetraselmis suecica OR para produção de biossurfactantes. Na primeira etapa Spirulina sp. LEB-18, Synechococcus nidulans LEB-25, Chlorella vulgaris LEB-106, Chlorella minutissima LEB-108 e Chlorella homosphaera foram cultivadas com glicose (cultivo mixotrófico). Spirulina sp. LEB-18 apresentou concentrações máximas de biomassa (2,55 g.L-1 ) quando foi utilizada 5 g.L-1 de glicose no meio de cultivo. A tensão superficial dos meios das microalgas foi reduzida de 70 para 43 mN.m-1 para as microalgas estudadas utilizando glicose como fonte de carbono. Resultados da segunda etapa mostraram que a microalga Scenedesmus sp. 3PAV3 apresentou valor de atividade emulsificante óleo em água (AE o/a) superior (339,8 UE.g-1 ) ao encontrado para as demais microalgas. Os menores valores de tensões superficiais variaram de 27,4 a 31,2 mN.m-1 . Na terceira etapa verificou-se que a microalga Chlorella sp. PROD1 apresentou valor de AE o/a semelhante (258,2 UE g -1 ) ao encontrado para o emulsificante comercial lecitina de soja (257,0 UE g -1 ) e ambas as microalgas estudadas alcançaram valores de tensões superficiais abaixo de 30 mN.m -1 . Na última etapa, Tetraselmis suecica OR cultivada em fotobiorreator do tipo Green Wall Panel apresentou menores valores de tensões superficiais para cultura com limitação de nitrogênio. Os resultados demonstraram a potencialidade das microalgas estudadas na produção de biossurfactantes, tanto pela redução da tensão superficial e interfacial, como pelo aumento da atividade emulsificante, confirmando uma possível aplicação como emulsificante, detergente, lubrificante, estabilizante, entre outras.
Resumo:
A fixação biológica de dióxido de carbono por microalgas é considerada a melhor forma de fixar CO2. Dentre os microrganismos utilizados destaca-se Spirulina platensis devido às suas altas taxas de fixação de CO2 e variedade de aplicações da biomassa gerada. A aplicação de modelos e simulações pode auxiliar na previsão de custos e na escolha das condições ideais de cultivo. Este trabalho teve como objetivo etsabelecer um modelo cinético no qual a iluminância é o fator limitante para o crescimento da microalga Spirulina platensis. A fim de validar o modelo proposto foi utilizada a microalga S. platensis, cultivada em meio Zarrouk modificado (NaHCO3 1,0 g.L-1 ), em biorreator aberto tipo raceway de 200L, mantido a 30°C, sob iluminação natural. A concentração celular variou de 0,19 a 0,34 g.L-1 e a velocidade específica de crescimento celular obtida a partir da regressão exponencial das curvas de crescimento de cada período iluminado variou de 0,55 a 0,59 d-1 . O modelo proposto gerou dados estimados satisfatórios (r2 =0,97). De acordo com os dados obtidos 16,2% da biomassa é consumida durante o período não iluminado.
Resumo:
O crescimento da população mundial e a tentativa de substituição parcial dos combustíveis fósseis por novas fontes de energia têm levado a uma maior atenção quanto à possível escassez de alimentos e a carência de grandes áreas disponíveis para agricultura. Microalgas, por meio do metabolismo fotossintético, utilizam energia solar e gás carbônico como nutrientes para o crescimento. A microalga Spirulina pode ser utilizada como suplemento alimentar, na biofixação de CO2, como fonte de biocombustíveis e no tratamento de efluentes. A digestão anaeróbia da biomassa microalgal produz biogás e os resíduos deste processo podem ser utilizados como substrato para novos cultivos da microalga. O objetivo deste trabalho foi estudar a conversão de Spirulina sp. LEB-18 em biogás em escala piloto e produzir biomassa microalgal utilizando os efluentes bicarbonato e dióxido de carbono do processo anaeróbio como fonte de nutrientes. Spirulina foi utilizada como substrato na digestão anaeróbia para produção de biogás em escala piloto sob temperaturas variáveis (12- 38 °C). Efluente do processo anaeróbio foi adicionado (20 %, v/v) como fonte de carbono no cultivo da microalga para avaliar o crescimento e a composição da biomassa. A seguir foi avaliada a capacidade da microalga de remover CO2 presente no biogás através de biofixação para obtenção do biocombustível purificado. O biogás produzido sob as diferentes temperaturas apresentou entre 72,2 e 74,4 % de CH4, quando realizado nas temperaturas 12 a 21 °C e 26 a 38 °C, respectivamente. A redução na temperatura do processo anaeróbio provocou um decréscimo na conversão de biomassa em biogás (0,30 para 0,22 g.g-1 ), ocorrendo dentro da faixa adequada e segura para as bactérias metanogênicas (pH 6,9; alcalinidade entre 1706,0 e 2248,0 mg.L-1 CaCO3 e nitrogênio amoniacal 479,3 a 661,7 mg.L-1 ). Os cultivos de Spirulina sp. LEB-18 em efluente anaeróbio contendo 20 % (v/v) e meio Zarrouk modificado (NaHCO3 2,8 e 5,3 g.L-1 ) apresentaram velocidade específica máxima de crescimento entre 0,324 e 0,354 d-1 , produtividade volumétrica entre 0,280 e 0,297 g.L-1 .d-1 e produtividade areal entre 14,00 e 14,85 g.m-2 .d-1 , sem diferenças significativas (p > 0,05) entre as diferentes condições estudadas. Lipídios variaram entre 4,9 e 5,0 % com proporção de ácido linoleico maximizada nos meios com efluente e ácido alfa-linolênico reduzida nesses meios em comparação ao meio Zarrouk completo. Nos ensaios para avaliar a capacidade da microalga Spirulina sp. LEB-18 de remover CO2 contaminante no biogás, as máximas concentrações celulares e produtividades de biomassa variaram, respectivamente, entre 1,12 e 1,24 g.L-1 e 0,11 e 0,14 g.L-1 .d-1 , não apresentando diferenças significativas (p > 0,05) entre os ensaios. A maior fixação diária total (FDT) de dióxido de carbono obtida foi 58,01 % (v/v) em cultivos com adição de biogás contendo 25 % (v/v) CO2. Obteve-se biogás com 89,5 % (v/v) de CH4 após injeção em cultivos de Spirulina, no qual aproximadamente 45 % (v/v) do CO2 injetado foi fixado pela microalga, gerando biomassa para diversas aplicações e biogás purificado.
Resumo:
Pesquisas com microalgas estão crescendo devido aos possíveis bioprodutos oriundos de sua biomassa, bem como as suas diferentes aplicabilidades. Microalgas podem ser cultivadas para a produção de biopolímeros com características de biocompatibilidade e biodegradabilidade. Nanofibras produzidas por electrospinning a partir de poli-β-hidroxibutirato (PHB) geram produtos com aplicabilidade na área de alimentos e médica. O objetivo deste trabalho foi selecionar microalgas com maior potencial para síntese de biopolímeros, em diferentes meios de cultivo, bem como purificar poli-β-hidroxibutirato e desenvolver nanofibras. Este trabalho foi dividido em cinco artigos: (1) Seleção de microalgas produtoras de biopolímeros; (2) Produção de biopolímeros pela microalga Spirulina sp. LEB 18 em cultivo com diferentes fontes de carbono e redução de nitrogênio; (3) Síntese de biopolímeros pela microalga Spirulina sp. LEB 18 em cultivos autotróficos e mixotróficos; (4) Purificação de poli-β- hidroxibutirato extraído da microalga Spirulina sp. LEB 18; e (5) Produção de nanofibras a partir de poli-β-hidroxibutirato de origem microalgal. Foram estudadas as microalgas Cyanobium sp., Nostoc ellipsosporum, Spirulina sp. LEB 18 e Synechococcus nidulans. Os biopolímeros foram extraídos nos tempos de 5, 10, 15, 20 e 25 d de cultivo a partir de digestão diferencial. Para os experimentos com diferentes nutrientes, foi utilizado como fonte de carbono, bicarbonato de sódio, acetato de sódio, glicose e glicerina modificando-se as concentrações de nitrogênio e fósforo. Os cultivos foram realizados em fotobiorreatores fechados de 2 L. A concentração inicial de inóculo foi 0,15 g.L-1 e os ensaios foram mantidos em estufa termostatizada a 30 ºC com iluminância de 41,6 µmolfótons.m -2 .s -1 e fotoperíodo 12 h claro/escuro. Para a purificação de PHB, foi utilizada a biomassa da cianobactéria Spirulina sp. LEB 18, cultivada em meio Zarrouk. Após a extração do biopolímero bruto, a amostra foi desengordurada com hexano e purificada com 1,2-carbonato de propileno. Foram determinadas as purezas e as propriedades térmicas no PHB purificado. O biopolímero utilizado para produzir as nanofibras apresentava 70 % de pureza. A técnica para produção de nanofibras foi o electrospinning. As microalgas que apresentaram máxima produtividade foram Nostoc ellipsosporum e Spirulina sp. LEB 18 com rendimento de biopolímero 19,27 e 20,62 % em 10 e 15 d, respectivamente, na fase de máximo crescimento celular. O maior rendimento de biopolímeros (54,48 %) foi obtido quando se utilizou 8,4 g.L-1 de NaHCO3, 0,05 g.L-1 de NaNO3 e 0,1 g.L-1 de K2HPO4. A condição que proporcionou maior pureza do PHB foi a 130 ºC e 5 min de contato entre o solvente (1,2-carbonato de propileno) e o PHB. As análises térmicas para todas as amostras foram semelhantes em relação ao PHB padrão (Sigma-Aldrich). A purificação com 1,2-carbonato de propileno foi eficiente para o PHB extraído de microalga, alcançando pureza acima de 90 %. A condição que apresentou menores diâmetros de nanofibras foi ao utilizar solução contendo 20 % de biopolímero solubilizado em clorofórmio. As condições do electrospinning que apresentou nanofibras com diâmetros de 470 e 537 nm foram, vazão 150 µL.h-1 , diâmetro do capilar 0,45 mm e voltagens entre 24,1 e 29,6 kV, respectivamente. A microalga Spirulina sp. LEB 18 produz PHB ao utilizar menores concentrações de nutrientes no meio de cultivo, que pode ser purificado com 1,2-carbonato de propileno. Este biopolímero possui aplicabilidade para produção de nanofibras.