1 resultado para Websites de comparação
em Repositório Institucional da Universidade Federal do Rio Grande - FURG
Resumo:
A cor da superfície dos alimentos é o primeiro parâmetro de qualidade avaliado pelos consumidores, e é critico para a aceitação do produto, então a medição adequada da cor é uma importante ferramenta. Nesta pesquisa avaliou-se a variação da cor em corvina (Micropogonias furnieri) armazenada em gelo durante 16 dias; os parâmetros de luminosidade (L*), valor cromático a*, valor cromático b*, variação total da cor (ΔE) e croma (C*) foram obtidos por sistema de visão computacional, e por colorímetro Konica Minolta CR-400. O frescor da corvina baseada nas mudanças da cor das brânquias foi avaliado utilizando um sistema de visão computacional. Também se modelou a oxidação da mioglobina em files de burriquete (Pogonias cromis), utilizando os parâmetros de vermelho (valor a* e R). Para registrar as mudanças da cor durante 57,6 h utilizou-se um sistema de visão computacional, a análise química realizou-se determinando a concentração de metamioglobina (%). Na avaliação da cor de corvina armazenada em gelo, o sistema de visão computacional mostrou diferenças significativas para L*, a*, ΔE e C*, enquanto que o colorímetro mostrou diferenças significativas para L* e ΔE, o único parâmetro que não apresentou diferenças entre instrumentos foi ΔE durante a avaliação da corvina armazenada em gelo. O coeficiente de correlação entre os parâmetros da cor (L*, a* e b*) das brânquias da corvina armazenada em gelo pelo tempo de armazenamento foi de 0,9747. O sistema de visão computacional registrou as mudanças da cor em filés de burriquete e se modelaram as mudanças utilizando um modelo exponencial. O sistema de visão computacional mostrou ser mais sensível às mudanças da cor durante a avaliação da cor na corvina armazenada em gelo. É possível prognosticar o tempo de armazenamento da corvina em gelo em função da mudança da cor das brânquias. Assim, foi possível modelar a variação da mioglobina em filés de burriquete utilizando sistemas de visão computacional para registrar ditas mudanças. Os sistemas de visão computacional têm grande capacidade para registrar as mudanças da cor e é possível utiliza-los para avaliar os alimentos em função da cor.