2 resultados para Kalman, Filmagem de
em Repositório Institucional da Universidade Federal do Rio Grande - FURG
Resumo:
The present paper describes a system for the construction of visual maps ("mosaics") and motion estimation for a set of AUVs (Autonomous Underwater Vehicles). Robots are equipped with down-looking camera which is used to estimate their motion with respect to the seafloor and built an online mosaic. As the mosaic increases in size, a systematic bias is introduced in its alignment, resulting in an erroneous output. The theoretical concepts associated with the use of an Augmented State Kalman Filter (ASKF) were applied to optimally estimate both visual map and the fleet position.
Resumo:
The use of teams of Autonomous Underwater Vehicles for visual inspection tasks is a promising robotic field. The images captured by different robots can be also to aid in the localization/navigation of the fleet. In a previous work, a distributed localization system was presented based on the use of Augmented States Kalman Filter through the visual maps obtained by the fleet. In this context, this paper details a system for on-line construction of visual maps and its use to aid the localization and navigation of the robots. Different aspects related to the capture, treatment and construction of mosaics by fleets of robots are presented. The developed system can be executed on-line on different robotic platforms. The paper is concluded with a series of tests and analyses aiming at to system validation.