2 resultados para Inteligência artificial - Engenharia de Aplicações

em Repositório Institucional da Universidade Federal do Rio Grande - FURG


Relevância:

100.00% 100.00%

Publicador:

Resumo:

As emoções são consideradas a regra central de nossas vidas, tendo grande impacto na tomada de decisões, ações, memória, atenção, etc. Sendo assim, existe grande interesse em simulá-las em ambientes computacionais, possibilitando que situações do cotidiano humano possam ser estudadas em ambientes controlados. Embora existam modelos teóricos para o funcionamento de emoções, estes por si só são insuficientes para uma simulação precisa em meios computacionais. Tendo como base um destes modelos, o modelo OCC, essa dissertação propõe a simulação de emoções em ambientes mutiagentes através da criação de uma rede Bayesiana capaz de traduzir estímulos gerados neste ambiente em emoções. A utilização de redes Bayesianas combinadas à estrutura do modelo OCC busca a adição de imprevisibilidade ao modelo, além de fornecê-lo uma estrutura computacional. A aplicação do modelo proposto a um sistema multiagentes proporciona o estudo da influência das emoções sobre as ações e comportamento dos agentes, possibilitando um estudo de comparação entre os resultados obtidos ao se realizar uma simulação multiagentes clássica e uma simulação multiagentes contendo emoções. De forma a validar e avaliar seu funcionamento, é apresentado o estudo da aplicação da rede Bayesiana de emoções sobre um modelo multiagentes exemplo, observando as variações que as emoções provocam sobre o comportamento dos agentes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho propõe um estudo de sinais cerebrais aplicados em sistemas BCI (Brain-Computer Interface - Interfaces Cérebro Computador), através do uso de Árvores de Decisão e da análise dessas árvores com base nas Neurociências. Para realizar o tratamento dos dados são necessárias 5 fases: aquisição de dados, pré-processamento, extração de características, classificação e validação. Neste trabalho, todas as fases são contempladas. Contudo, enfatiza-se as fases de classificação e de validação. Na classificação utiliza-se a técnica de Inteligência Artificial denominada Árvores de Decisão. Essa técnica é reconhecida na literatura como uma das formas mais simples e bem sucedidas de algoritmos de aprendizagem. Já a fase de validação é realizada nos estudos baseados na Neurociência, que é um conjunto das disciplinas que estudam o sistema nervoso, sua estrutura, seu desenvolvimento, funcionamento, evolução, relação com o comportamento e a mente, e também suas alterações. Os resultados obtidos neste trabalho são promissores, mesmo sendo iniciais, visto que podem melhor explicar, com a utilização de uma forma automática, alguns processos cerebrais.