1 resultado para Doors (Vehicles).
em Repositório Institucional da Universidade Federal do Rio Grande - FURG
Filtro por publicador
- Repository Napier (1)
- Aberdeen University (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (4)
- Aquatic Commons (3)
- Archive of European Integration (66)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Aston University Research Archive (9)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (2)
- Blue Tiger Commons - Lincoln University - USA (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (7)
- Boston University Digital Common (1)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (73)
- CentAUR: Central Archive University of Reading - UK (20)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (8)
- Cochin University of Science & Technology (CUSAT), India (1)
- Coffee Science - Universidade Federal de Lavras (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- Dalarna University College Electronic Archive (1)
- Digital Commons - Michigan Tech (4)
- Digital Commons - Montana Tech (1)
- Digital Commons at Florida International University (6)
- Digital Peer Publishing (2)
- Digital Repository at Iowa State University (1)
- DigitalCommons@The Texas Medical Center (1)
- DRUM (Digital Repository at the University of Maryland) (7)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (2)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (24)
- Instituto Politécnico do Porto, Portugal (7)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (5)
- Ministerio de Cultura, Spain (3)
- National Center for Biotechnology Information - NCBI (1)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (67)
- Queensland University of Technology - ePrints Archive (213)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (3)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (8)
- Repositorio Institucional Universidad Católica de Colombia (2)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- The Scholarly Commons | School of Hotel Administration; Cornell University Research (1)
- Universidad de Alicante (2)
- Universidad Politécnica de Madrid (38)
- Universidade de Lisboa - Repositório Aberto (2)
- Universitat de Girona, Spain (11)
- University of Connecticut - USA (1)
- University of Michigan (244)
- University of Queensland eSpace - Australia (10)
- University of Washington (1)
- WestminsterResearch - UK (14)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
The present paper describes a system for the construction of visual maps ("mosaics") and motion estimation for a set of AUVs (Autonomous Underwater Vehicles). Robots are equipped with down-looking camera which is used to estimate their motion with respect to the seafloor and built an online mosaic. As the mosaic increases in size, a systematic bias is introduced in its alignment, resulting in an erroneous output. The theoretical concepts associated with the use of an Augmented State Kalman Filter (ASKF) were applied to optimally estimate both visual map and the fleet position.