1 resultado para Defective Vehicles.
em Repositório Institucional da Universidade Federal do Rio Grande - FURG
Filtro por publicador
- Aberdeen University (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (3)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (4)
- Aquatic Commons (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (64)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (4)
- Aston University Research Archive (10)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (5)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (16)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (72)
- CentAUR: Central Archive University of Reading - UK (21)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (10)
- Cochin University of Science & Technology (CUSAT), India (1)
- Coffee Science - Universidade Federal de Lavras (1)
- Digital Commons - Michigan Tech (4)
- Digital Commons at Florida International University (6)
- Digital Peer Publishing (2)
- Digital Repository at Iowa State University (1)
- DigitalCommons@The Texas Medical Center (5)
- DRUM (Digital Repository at the University of Maryland) (7)
- Duke University (2)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (5)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (27)
- Instituto Politécnico de Leiria (1)
- Instituto Politécnico do Porto, Portugal (7)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (5)
- Ministerio de Cultura, Spain (3)
- National Center for Biotechnology Information - NCBI (65)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (75)
- Queensland University of Technology - ePrints Archive (129)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositorio Institucional de la Universidad Pública de Navarra - Espanha (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (11)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- School of Medicine, Washington University, United States (2)
- The Scholarly Commons | School of Hotel Administration; Cornell University Research (1)
- Universidad de Alicante (2)
- Universidad Politécnica de Madrid (38)
- Universidade de Lisboa - Repositório Aberto (2)
- Universitat de Girona, Spain (11)
- Université de Montréal, Canada (2)
- University of Michigan (258)
- University of Queensland eSpace - Australia (14)
- University of Washington (1)
- WestminsterResearch - UK (14)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
The present paper describes a system for the construction of visual maps ("mosaics") and motion estimation for a set of AUVs (Autonomous Underwater Vehicles). Robots are equipped with down-looking camera which is used to estimate their motion with respect to the seafloor and built an online mosaic. As the mosaic increases in size, a systematic bias is introduced in its alignment, resulting in an erroneous output. The theoretical concepts associated with the use of an Augmented State Kalman Filter (ASKF) were applied to optimally estimate both visual map and the fleet position.