3 resultados para Cadeias de Markov. Algoritmos genéticos

em Repositório Institucional da Universidade Federal do Rio Grande - FURG


Relevância:

100.00% 100.00%

Publicador:

Resumo:

O estudo do crescimento econômico é de suma importância para que possamos averiguar a trajetória de uma economia ao longo do tempo, a proposta desse trabalho é analisar o crescimento econômico no estado do Rio Grande do Sul, através do instrumental das cadeias de Markov, a ideia principal do estudo está na hipótese de convergência de renda. Primeiramente será testado a hipótese de convergência de renda do estado por meio das microrregiões, para isso serão utilizados dados de produto per capita dos anos de 1990, 2000 e 2010. Também será testado a hipótese de convergência para os municípios do Conselho Regional de Desenvolvimento Sul, situado no Rio Grande do Sul, utilizando dados de renda per capita dos anos de 1991, 2000 e 2010. Os resultados obtidos para as microrregiões do Rio Grande do Sul mostram que as economias não estão convergindo em sua totalidade para uma classe de renda especifica, porém é percebido que no longo prazo haverá uma maior concentração das microrregiões nos extratos de renda próximos a média, o tempo esperado para que as economias cheguem ao seu estado estacionário é de seis períodos. Por meio dos resultados obtidos para a região do Corede Sul, temos que as economias convergirão em sua maioria para a classe de renda médio pobre, seguido pela classe dos médios ricos. Ambas as classes estão situadas próximas a média regional, sendo que as classes de renda pobre e rico situadas aos extremos serão extintas no longo prazo. O tempo esperado para que as economias cheguem ao estado estacionário é de onze períodos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O estudo do crescimento econômico é de suma importância para que possamos averiguar a trajetória de uma economia ao longo do tempo, a proposta desse trabalho é analisar o crescimento econômico no estado do Rio Grande do Sul, através do instrumental das cadeias de Markov, a ideia principal do estudo está na hipótese de convergência de renda. Primeiramente será testado a hipótese de convergência de renda do estado por meio das microrregiões, para isso serão utilizados dados de produto per capita dos anos de 1990, 2000 e 2010. Também será testado a hipótese de convergência para os municípios do Conselho Regional de Desenvolvimento Sul, situado no Rio Grande do Sul, utilizando dados de renda per capita dos anos de 1991, 2000 e 2010. Os resultados obtidos para as microrregiões do Rio Grande do Sul mostram que as economias não estão convergindo em sua totalidade para uma classe de renda especifica, porém é percebido que no longo prazo haverá uma maior concentração das microrregiões nos extratos de renda próximos a média, o tempo esperado para que as economias cheguem ao seu estado estacionário é de seis períodos. Por meio dos resultados obtidos para a região do Corede Sul, temos que as economias convergirão em sua maioria para a classe de renda médio pobre, seguido pela classe dos médio ricos. Ambas as classes estão situadas próximas a média regional, sendo que as classes de renda pobre e rico situadas aos extremos serão extintas no longo prazo. O tempo esperado para que as economias cheguem ao estado estacionário é de onze períodos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O problema de planejamento de rotas de robôs móveis consiste em determinar a melhor rota para um robô, em um ambiente estático e/ou dinâmico, que seja capaz de deslocá-lo de um ponto inicial até e um ponto final, também em conhecido como estado objetivo. O presente trabalho emprega o uso de uma abordagem baseada em Algoritmos Genéticos para o planejamento de rotas de múltiplos robôs em um ambiente complexo composto por obstáculos fixos e obstáculos moveis. Através da implementação do modelo no software do NetLogo, uma ferramenta utilizada em simulações de aplicações multiagentes, possibilitou-se a modelagem de robôs e obstáculos presentes no ambiente como agentes interativos, viabilizando assim o desenvolvimento de processos de detecção e desvio de obstáculos. A abordagem empregada busca pela melhor rota para robôs e apresenta um modelo composto pelos operadores básicos de reprodução e mutação, acrescido de um novo operador duplo de refinamento capaz de aperfeiçoar as melhores soluções encontradas através da eliminação de movimentos inúteis. Além disso, o calculo da rota de cada robô adota um método de geração de subtrechos, ou seja, não calcula apenas uma unica rota que conecta os pontos inicial e final do cenário, mas sim várias pequenas subrotas que conectadas formam um caminho único capaz de levar o robô ao estado objetivo. Neste trabalho foram desenvolvidos dois cenários, para avaliação da sua escalabilidade: o primeiro consiste em um cenário simples composto apenas por um robô, um obstáculo movel e alguns obstáculos fixos; já o segundo, apresenta um cenário mais robusto, mais amplo, composto por múltiplos robôs e diversos obstáculos fixos e moveis. Ao final, testes de desempenho comparativos foram efetuados entre a abordagem baseada em Algoritmos Genéticos e o Algoritmo A*. Como critério de comparação foi utilizado o tamanho das rotas obtidas nas vinte simulações executadas em cada abordagem. A analise dos resultados foi especificada através do Teste t de Student.