7 resultados para Blendas poliméricas

em Repositório Institucional da Universidade Federal do Rio Grande - FURG


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A utilização do óleo de mamona como matéria-prima para produção de biodiesel mostra-se inviável na combustão interna do motor devido sua natureza química incomum que lhe confere especificações acima do permitido nas especificações técnicas da legislação nacional brasileira. Desta forma, a blenda com óleo de arroz refinado (OM:OA) qualifica o biodiesel atendendo a legislação nacional, além de corrigir a elevada acidez do óleo bruto de mamona prejudicial ao processo de transesterificação homogênea básica. No presente estudo realizou-se a produção de biodiesel etílico em escala piloto a partir de blendas de óleo bruto de mamona e óleo refinado de arroz em dois processos: o primeiro processo adotando a mistura direta dos dois óleos e o segundo processo pela esterificação antecipada do óleo bruto de mamona. Ambos os processos foram aplicados visando tanto definir os critérios de processo (acidez inicial) quanto o cumprimento das especificações técnicas (viscosidade e densidade). A produção em escala piloto (200 litros/batelada) foi realizada na Usina Demonstrativa para Produção de Biodiesel – BIOSUL (Edital FINEP, 2005) da Universidade Federal do Rio Grande - FURG utilizando em ambos os processos transesterificação, com hidróxido de sódio, e esterificação com ácido sulfúrico. Os processos apresentaram resultados satisfatórios, sendo o processo de mistura direta (Processo A) o que obteve melhores rendimentos (94,04%, blenda 20:80) enquanto que o processo de pré- esterificação (Processo B) foi aquele que proporcionou a maior fração de óleo de mamona na blenda (80,36%, 33:67). Os resultados para o Processo A de glicerol livre, monoacilgliceróis, diacilgliceróis, triacilgliceróis e de glicerol total foram, respectivamente, de 1,322 %, 6,092 %, 1,000 %, 0,884 e 3,152%. Neste estudo foi comprovada a viabilidade do processamento, em batelada, de blendas dos óleos de mamona e arroz. O óleo de mamona bruto pode ser utilizado em até 30% produzindo biodiesel dentro da legislação, verificando-se assim a viabilidade do uso da mamona na produção de biocombustíveis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

No presente trabalho foi investigada a transesterificação de blendas dos óleos de soja e de tungue com metanol ou etanol empregando catalisador alcalino (NaOH ou KOH). Foi investigado o tempo reacional, a proporção da blenda, a concentração e o tipo de catalisador, tipo de álcool e razão molar, temperatura e metodologia empregada no tratamento da reação. Nas reações com metanol obtiveram-se melhores conversões com tempo reacional de 1,5h; temperatura de 60°C; proporção blenda dos óleos de soja e de tungue de 90:10 (m/m); concentração de NaOH de 0,5% em relação a massa da blenda e razão molar metanol:blenda de 6:1. O tratamento dos ésteres metílicos produzidos na reação foi realizado por lavagem com água a 60°C após o processo de decantação das fases, metodologia C. O rendimento de ésteres metílicos foi superior a 96% e, o teor de mono-, di- e triacilglicerídeos, glicerol livre e total ficou abaixo dos limites estabelecidos pela ANP, indicando boa conversão (> 96,5%). Nas reações com etanol verificou-se que as melhores condições reacionais foram com uma concentração de catalisador de 0,8% de NaOH em relação a massa da blenda, razão molar etanol:blenda de 9:1, tempo de 1,5h e temperatura de 60°C. O tratamento dos produtos da reação foi realizado por lavagem com água a 60°C após o processo de remoção do etanol e decantação das fases, metodologia D. A concentração do catalisador foi um fator determinante na separação das fases. Uma maior concentração de catalisador favorece a saponificação, dificultando a separação das fases e afetando o rendimento do biodiesel sintetizado, tanto para o metílico quanto o etílico. O índice de acidez, tanto para o biodiesel metílico como o etílico, para qualquer proporção da blenda dos óleos de soja e tungue, ficaram dentro das normas da ANP, com valores abaixo de 0,5 mg.g-1 de KOH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

No Brasil o biodiesel é utilizado em misturas com óleo diesel em proporções de 5%, sem que haja modificações nos motores. Com o intuito de diversificar a utilização de oleaginosas não comestíveis no ramo dos biocombustíveis, e ainda vincular a produção com agricultura sustentável, uma alternativa para o RS é a utilização do óleo de tungue para a produção de biodiesel. A caracterização e quantificação de ácidos graxos do biodiesel de tungue, torna-se importante devido à seu exclusivo perfil graxo. Neste trabalho, foi estudado o desenvolvimento e validação de método para a determinação do perfil graxo do biodiesel metílico de tungue e blendas com soja utilizando GC-MS. Os parâmetros de validação considerados foram: curva analítica, linearidade, seletividade, limite de detecção e quantificação, robustez, precisão e exatidão. Para determinar as melhores condições cromatográficas, foram testadas diferentes programações de temperatura no forno cromatográfico; fluxo de gás; temperatura do injetor, detector e interface; e modo de injeção. As condições do GCMS após a otimização foram: injeção de 1 µL com injeção em alta pressão (300 kPa), T do injetor: 250 ºC, injeção split 1:30, fluxo de 1 mL min-1, coluna Rtx-5MS com dimensões 30 m x 0,25 mm x 0,25 µm, T forno: isoterma de 2 min a 130 ºC, aumento de 20 ºC/min até 220 ºC, aumento de 0,5ºC/min até 223ºC, aumento de 7 ºC/min até 250 ºC e isoterma em 250 ºC por 3 min, resultando em 20 min de análise. A temperatura da fonte e interface foram de 200 ºC e 250 ºC, respectivamente, com o MS no modo full scan, ionização por impacto eletrônico a 70 eV, e intervalo de massas de 30 a 500 u.m.a. A identificação do α-eleosteárico foi baseada na fragmentação característica do composto, pela comparação com o espectro do ácido linolênico, e ainda pelo tempo de retenção do composto. Na validação, as curvas analíticas apresentaram valores de r maiores que 0,99. O LD e LQ foram adequados, permitindo a quantificação de ésteres na concentração mínima de 0,6%. Os valores de exatidão ficaram entre 86 e 117%, com RSD% menores que 8%. O efeito matriz também foi avaliado, sendo que esse efeito foi considerado médio para a maioria dos compostos, ficando entre ± 20 e 50%. Durante a aplicação do método, o mesmo se mostrou adequado para amostras de biodiesel metílico de tungue e blendas com soja, nas proporções de 15:85, 20:80 e 25:75 (T:S, v/v). A aplicabilidade do método também foi testada para o biodiesel de soja, obtendo resultados satisfatórios, mostrando-se assim, além de tudo, ser um método robusto.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As nanofibras produzidas através de biopolímeros oriundos de materiais biológicos têm tomado espaço no âmbito mundial, estes podem ter sua origem em compostos como a proteína animal, por exemplo, as proteínas de pescado. O presente trabalho teve como objetivo geral desenvolver nanofibras de isolado proteico de Bijupirá (Rachycentron canadum). O isolado proteico de bijupirá (IPB) foi obtido utilizando processo de variação de pH para solubilizar e isolar proteínas. O IPB obtido foi caracterizado quanto sua composição química proximal e suas propriedades físicoquímicas, estruturais e funcionais. O rendimento do IPB foi de 98,17% de proteína, em base seca. A maior solubilidade e a maior capacidade de retenção de água (CRA) do IPB foram obtidas em pH 11 e 21,9 mL.g-1 de proteína, respectivamente. Os perfis eletroforéticos revelaram massas moleculares características de proteínas miofibrilares (miosina e actina). Os principais picos identificados pelas análises de Espectroscopia na Região do Infravermelho (FTIR) são provenientes de ligações peptídicas (ligações amida), como Amida I e II. Os maiores pontos de fusão e de degradação do IPB foram de 259,1°C e 378°C, respectivamente, obtendo assim, um isolado proteico com elevada estabilidade térmica. As nanofibras foram desenvolvidas pela técnica de electrospinnig. Foram preparadas soluções poliméricas utilizando 1% (p/v) de óxido de polietileno (PEO) e 1, 2, 3, 4, 5 e 6% (p/v) de IPB. Os parâmetros utilizados no processo de electrospinning como: potencial elétrico, distância da ponta do coletor a agulha e a taxa de fluxo da solução foram fixados em 16,7 kV, 15 cm, e 150 µL.h-1 , respectivamente. Os efeitos do solvente e a adição de um biopolímero comercial na capacidade de formação e morfologia das nanofibras foram estudados. Em relação ao efeito do solvente na solubilização das proteínas, o processo de electrospinning foi favorecido quando utilizado o ácido fórmico 85% (v/v), como este solvente orgânico promove a formação de estruturas helicoidais aleatórias e, consequentemente, um aumento no emaranhado de biopolímeros. A adição do biopolímero PEO proporcionou melhor viscosidade às soluções de IPB e o desenvolvimento das nanofibras. A morfologia analisada por Microscopia eletrônica de Varredura (MEV) das nanofibras obtidas com 5 e 4% (p/v) de IPB e 1% (/v) de PEO foi de 205 ± 82 nm e 476 ± 107, respectivamente.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

C-ficocianina (C-FC) é uma ficobiliproteína, de cor natural azul, com diversas aplicações na indústria alimentícia, farmacêutica e biomédica, dependendo do seu grau específico de pureza, que pode variar de 0,7 a 4,0, com respectivo aumento de seu valor comercial. Essa pureza é alcançada através de diversas técnicas de purificação, que podem ser aplicadas em diferentes sequências. Um destes processos de purificação de proteínas baseia-se na cromatografia de troca iônica, que utiliza trocadores que adsorvem as proteínas como resultado de interações iônicas entre a superfície da proteína e o trocador. Resinas e colunas de leito expandido podem ser utilizadas para aumentar a produtividade dessa técnica. É fundamental conhecer o perfil do processo de adsorção, para melhor aplicá-lo como ferramenta para o design e otimização de parâmetros operacionais. Outra tecnologia para o tratamento de biomoléculas é a ultrafiltração. Esta técnica é aplicável em larga escala, apresenta baixa complexidade de aplicação e pode ser realizada em condições brandas, minimizando o dano para o produto. Para aumentar a estabilidade da C-FC, e facilitar a sua aplicação, podem ser avaliadas técnicas recentes, não exploradas para este fim, como as nanofibras obtidas através do processo de electrospinning. Estas fibras possuem uma área superficial específica extremamente elevada devido a seu pequeno diâmetro. O objetivo deste trabalho foi avaliar parâmetros de adsorção e diferentes técnicas para purificação de C-ficocianina de Spirulina platensis e obter nanofibras poliméricas incorporadas de C-ficocianina. O trabalho foi dividido em quatro artigos. No primeiro artigo, foram avaliados os parâmetros e as isotermas de adsorção de C-ficocianina em resina de troca iônica para leito expandido Streamline® DEAE. Verificou-se que o maior coeficiente de partição foi obtido em pH 7,5, nas temperaturas de 15 e 25 °C. As isotermas de adsorção da Cficocianina foram bem representadas pelos modelos de Langmuir, de Freundlich e de Langmuir-Freundlich, sendo os valores estimados para Qm e Kd obtidos pela isoterma de Langmuir foram, respectivamente, 33,92 mg.mL-1 e 0,123 mg.mL-1, respectivamente. No segundo artigo foi avaliada a purificação de C-FC até grau alimentar, utilizando ultrafiltração (UF). Com a membrana de 50 kDa, identificou-se que somente a temperatura e a aplicação de diferentes ciclos de diafiltração (DF) causaram influência significativa sobre a purificação e recuperação da C-ficocianina. Foram então aplicados o aumento gradativo da quantidade de ciclos, e a diafiltração previamente à ultrafiltração (DF/UF), onde obteve-se um extrato de Cficocianina com pureza de 0,95. No terceiro artigo foram propostos processos de purificação, envolvendo a utilização das diferentes técnicas para obtenção de C-FC com diferentes purezas. Determinou-se que a partir de cromatografia de troca iônica em leito fixo seguido de DF/UF, obtém-se C-FC para uso em cosméticos e a partir de precipitação com sulfato de amônio, e DF/UF obtém-se C-FC para uso em biomarcadores. Com uma sequência de precipitação com sulfato de amônio, DF/UF e cromatografia de troca iônica em leito fixo chega-se a C-FC de grau analítico. No último artigo, C-FC foi incorporada a nanofibras de óxido de polietileno (PEO) através de processo de electrospinning. Foram determinadas a condutividade da solução de C-FC/PEO, a estrutura e comportamento termogravimétrico das nanofibras formadas. Soluções de polímeros com concentração de 6 e 8% proporcionaram a formação de nanofibras com diâmetro médio inferior a 800 nm, homogêneas, sem a presença de gotas. A análise termogravimétrica identificou aumento na resistência térmica da C-FC incorporada nas fibras.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O metabolismo aeróbico é muito eficiente no processo de geração de energia, no entanto, é uma fonte de produção de espécies reativas de oxigênio (ERO). Para a prevenção dos efeitos potencialmente danosos dessas ERO, os organismos desenvolveram um sistema de defesa antioxidante (SDA), que inclui compostos enzimáticos e não enzimáticos. O ácido lipóico (AL) é uma molécula lipo e hidro solúvel, com capacidade de atravessar membranas celulares. Ele possui propriedades antioxidantes, auxiliando na eliminação de ERO, induzindo a expressão de genes importantes nas defesas antioxidantes, quelando metais e interagindo com outros antioxidantes. Trabalhos prévios demonstraram que nanocápsulas poliméricas de ácido lipóico favoreceram a proteção deste antioxidante, aumentando sua estabilidade físico- química em comparação com formulações contendo ácido lipóico livre. O objetivo deste estudo foi avaliar e comparar o efeito do AL livre e do AL em nanocápsulas sobre a atividade de enzimas antioxidantes (glutamato-cisteína ligase, GCL e glutationa-S- transferase, GST), a concentração de glutationa reduzida (GSH) e sub-produtos da peroxidação lipídica (malondealdeído, método TBARS) e da expressão de genes que codificam para as diferentes formas da enzima GST (alfa e pi). Para isso o peixe Cyprinus carpio (Cyprinidae) foi exposto a uma dose de 40 mg/kg a diferentes formas de AL (livre e em nanocápsulas) por injeção intraperitoneal (duas injeções, sendo a primeira no tempo 0 e a segunda após 24 h), sendo logo sacrificados a diferentes tempos da primeira injeção (48 h, 96 h e uma semana), sendo dissecados o cérebro, fígado e músculo dos peixes de cada tratamento. Os resultados obtidos indicam que os órgãos respondem de forma diferente. A curto prazo, o fígado foi o principal órgão a apresentar respostas antioxidantes após tratamento com AL, enquanto que a longo prazo o cérebro e o músculo se mostraram mais responsivos em termos antioxidantes quando 6 comparado ao fígado. Foi também importante a forma em que o AL é administrado, livre ou em nanocápsulas, sendo observado que um mesmo órgão em um mesmo tempo de exposição pode responder de forma diferente de acordo com o tipo de AL que está sendo utilizado. Além disso, o efeito antioxidante do AL nanoencapsulado parece ser mais efetivo quando utilizado a longo prazo, sugerindo que a forma nanoencapsulada libera o antioxidante em forma mais lenta. Os resultados também indicam que a composição da nanocápsulas deve ser levada em consideração, uma vez que foi observado um efeito antioxidante significativo nos tratamentos que continham apenas a nanocápsulas, sem o AL. Sugere-se que este efeito ocorra devido à produção endógena do próprio antioxidante em questão, favorecida pela composição da própria nanocápsula, que possui ácido octanóico, substrato para a síntese de AL. Também se observou um efeito pró-oxidante em alguns tratamentos onde foi utilizada esta formulação, sugerindo que alguns componentes da nanocápsula, como por exemplo, o surfactante que é utilizado para estabilizar a suspensão, possam aumentar a suscetibilidade dos órgãos ao estresse oxidativo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

No presente trabalho foi utilizado o processo de produção de biodiesel a partir da transesterificação de blendas de óleo de mamona e soja com etanol empregando-se como catalisador NaOH e posterior adição de H2SO4 para a neutralização do catalisador, visando a quebra de sabões e a melhor separação do biodiesel de seus co-produtos. Foi investigada a reação de transesterificação em blendas de óleo de mamona:soja nas proporções de 10:90, 20:80, 30:70, 40:60, 50:50, 60:40, 70:30, 80:20 e 90:10, sendo que as proporções que apresentaram melhores rendimentos foram 30:70, 60:40 e 80:20. O biodiesel obtido das blendas como melhor rendimento foram submetidos a medições viscosimétricas, sendo a proporção 30:70 a que apresentou a viscosidade mais próxima à especificada pela ANP (6,12 mm2 /s). O biodiesel etílico produzido com a blenda 30:70 obtido na transesterificação foi submetido a esterificação para diminuir o índice de acidez, utilizando H2SO4 como catalisador em concentrações de 5% e 10% em relação a massa de ácidos graxos livres, com álcool etílico numa razão molar de 60:1 e 80:1 álcool:ácido graxo. Para a reação de transesterificação, também foi estudada, a influência da concentração do catalisador no rendimento de biodiesel etílico e na formação de sabão. A quantidade de sabão formado no processo variou de 5,70% a 9,54% para 1% a 2% de catalisador, respectivamente.