4 resultados para Aguas residuais - Purificação - Presidente Prudente (SP)
em Repositório Institucional da Universidade Federal do Rio Grande - FURG
Resumo:
O crescimento da população mundial e a tentativa de substituição parcial dos combustíveis fósseis por novas fontes de energia têm levado a uma maior atenção quanto à possível escassez de alimentos e a carência de grandes áreas disponíveis para agricultura. Microalgas, por meio do metabolismo fotossintético, utilizam energia solar e gás carbônico como nutrientes para o crescimento. A microalga Spirulina pode ser utilizada como suplemento alimentar, na biofixação de CO2, como fonte de biocombustíveis e no tratamento de efluentes. A digestão anaeróbia da biomassa microalgal produz biogás e os resíduos deste processo podem ser utilizados como substrato para novos cultivos da microalga. O objetivo deste trabalho foi estudar a conversão de Spirulina sp. LEB-18 em biogás em escala piloto e produzir biomassa microalgal utilizando os efluentes bicarbonato e dióxido de carbono do processo anaeróbio como fonte de nutrientes. Spirulina foi utilizada como substrato na digestão anaeróbia para produção de biogás em escala piloto sob temperaturas variáveis (12- 38 °C). Efluente do processo anaeróbio foi adicionado (20 %, v/v) como fonte de carbono no cultivo da microalga para avaliar o crescimento e a composição da biomassa. A seguir foi avaliada a capacidade da microalga de remover CO2 presente no biogás através de biofixação para obtenção do biocombustível purificado. O biogás produzido sob as diferentes temperaturas apresentou entre 72,2 e 74,4 % de CH4, quando realizado nas temperaturas 12 a 21 °C e 26 a 38 °C, respectivamente. A redução na temperatura do processo anaeróbio provocou um decréscimo na conversão de biomassa em biogás (0,30 para 0,22 g.g-1 ), ocorrendo dentro da faixa adequada e segura para as bactérias metanogênicas (pH 6,9; alcalinidade entre 1706,0 e 2248,0 mg.L-1 CaCO3 e nitrogênio amoniacal 479,3 a 661,7 mg.L-1 ). Os cultivos de Spirulina sp. LEB-18 em efluente anaeróbio contendo 20 % (v/v) e meio Zarrouk modificado (NaHCO3 2,8 e 5,3 g.L-1 ) apresentaram velocidade específica máxima de crescimento entre 0,324 e 0,354 d-1 , produtividade volumétrica entre 0,280 e 0,297 g.L-1 .d-1 e produtividade areal entre 14,00 e 14,85 g.m-2 .d-1 , sem diferenças significativas (p > 0,05) entre as diferentes condições estudadas. Lipídios variaram entre 4,9 e 5,0 % com proporção de ácido linoleico maximizada nos meios com efluente e ácido alfa-linolênico reduzida nesses meios em comparação ao meio Zarrouk completo. Nos ensaios para avaliar a capacidade da microalga Spirulina sp. LEB-18 de remover CO2 contaminante no biogás, as máximas concentrações celulares e produtividades de biomassa variaram, respectivamente, entre 1,12 e 1,24 g.L-1 e 0,11 e 0,14 g.L-1 .d-1 , não apresentando diferenças significativas (p > 0,05) entre os ensaios. A maior fixação diária total (FDT) de dióxido de carbono obtida foi 58,01 % (v/v) em cultivos com adição de biogás contendo 25 % (v/v) CO2. Obteve-se biogás com 89,5 % (v/v) de CH4 após injeção em cultivos de Spirulina, no qual aproximadamente 45 % (v/v) do CO2 injetado foi fixado pela microalga, gerando biomassa para diversas aplicações e biogás purificado.
Resumo:
As proteases constituem 60-65% do mercado global das enzimas industriais e são utilizadas na indústria de alimentos no processo de amaciamento de carne, na síntese de peptídeos, preparo de fórmulas infantis, panificação, cervejarias, produtos farmacêuticos, diagnósticos médicos, como aditivos na indústria de detergentes e na indústria têxtil no processo de depilação e transformação do couro. Proteases específicas produzidas por micro-organismos queratinolíticos são chamadas de queratinases e distinguem-se de outras proteases pela maior capacidade de degradação de substratos compactos e insolúveis como a queratina. Atualmente, processos que apontem o uso total das matérias-primas e que não resultem em impactos negativos ao meio ambiente tem ganhado destaque. Dentro desta temática, destacam-se a reutilização da farinha de penas residual durante o cultivo do Bacillus sp. P45 para produção de proteases e a biomassa residual de levedura, ambas com elevados teores de proteínas, podendo ser utilizadas no cultivo do Bacillus sp. P45 para obtenção de proteases. O objetivo deste trabalho foi obter a enzima queratinase purificada em grandes quantidades, sua caracterização, bem como a sua aplicação em processos de coagulação enzimática do leite para o desenvolvimento de um queijo cremoso enriquecido com farinha de chia e quinoa. Além disso, aplicar diferentes coprodutos para produção de enzimas proteolíticas e queratinolíticas. A presente tese foi dividida em quatro artigos: no primeiro foi realizado a obtenção da queratinase purificada em maiores quantidades e a determinação dos parâmetros de estabilidade térmica e a influência de componentes químicos na atividade enzimática. A obtenção da enzima em maiores quantidades alcançou fatores de purificação de 2,6, 6,7 e 4,0 vezes, paras 1º SAB, 2º SAB e diafiltração, respectivamente. A recuperação enzimática alcançou valores de 75,3% para o 1º SAB, 75,1% no 2º sistema e 84,3% na diafiltração. A temperatura de 55ºC e o pH 7,5 foram determinados como ótimos para atividade da enzima queratinase. O valor da energia de desativação (Ed) médio foi de 118,0 kJ/mol e os valores de z e D variaram de 13,6 a 18,8ºC, e 6,9 a 237,3 min, respectivamente. Além disso a adição de sais (CaCl2, CaO, C8H5KO4 e MgSO4) elevou a atividade da enzima na presença destes compostos. O segundo artigo apresenta a aplicação da queratinase como coagulante de leite bovino e sua aplicação na obtenção de queijo cremoso enriquecido com chia e quinoa. A enzima mostrou atividade de coagulação semelhante ao coagulante comercial, na concentração de 30mg/mL. A enzima purificada foi empregada de forma eficiente na fabricação do queijo cremoso, que apresentou valores de pH de 5,3 e acidez de 0,06 a 0,1 mol/L, com elevação durante os 25 dias de armazenamento. O terceiro artigo apresenta o perfil do queijo cremoso enriquecido com farinha de chia e quinoa, o qual apresentou alto índice de retenção de água (>99,0%) e baixos valores de sinérese (<0,72%). Elevados teores de fibras foi verificado (3,0 a 5,0%), sugerindo seu consumo como fonte de fibras. As análises microbiológicas foram de acordo com a legislação vigente. Na análise sensorial foi verificado altos valores de suavidade ao paladar e verificado maiores valores de consistência e untabilidade nas amostras com maiores concentrações de nata e quinoa. O quarto artigo traz a extração de β-galactosidase por ultrassom e o uso da biomassa residual da levedura, bem como o uso de farinha de penas residuais como substrato para obtenção de proteases. O ultrassom foi eficiente para ruptura celular e extração de β-galactosidase, apresentando alta atividade (35,0 U/mL) e rendimento (876,0 U/g de biomassa). A maior atividade proteolítica (1300 U/mL em 32 h) e queratinolítica (89,2 U/mL) verificadas ocorreram utilizando-se a biomassa e a farinha de penas residuais, respectivamente. Maior produtividade proteolítica (40,8 U/mL/h) foi verificado no meio utilizando biomassa residual como substrato. Já a maior produtividade queratinolítica (2,8 U/mL/h) foi alcançada utilizando farinha de penas reutilizada.
Resumo:
Com o aumento na captura de pescado e da poluição do meio ambiente, esta-se à margem de exceder a estimativa do limite da sustentabilidade, e obviamente isto faz com se utilize os recursos marítimos com mais inteligência e precaução. Aplicando tecnologia enzimática ou química é possível recuperar as proteínas do processamento do pescado, produzindo hidrolisados e isolados protéicos. Uma grande quantidade de proteínas insolúveis está disponível em escamas, peles e ossos, subprodutos do processamento do pescado, que podem ser solubilizadas através de fungos e bactérias. Utilizando isolados protéicos é possível obter biopolímeros, estes têm chamado a atenção nos últimos anos, pois são biodegradáveis, não-tóxicos e geralmente biocompatíveis. Os hidrogéis protéicos são polímeros que podem absorver uma quantidade de água a partir de 10 até centenas de vezes o seu peso seco. O objetivo deste trabalho foi desenvolver um hidrogel protéico, com propriedades superabsorventes, a partir das proteínas solúveis e insolúveis da corvina (Micropogonias furnieri). Para a produção dos hidrolisados a partir das proteínas solúveis foi utilizado processo enzimático (Alcalase e Flavourzyme) e químico (solubilização ácida e alcalina). Nos processos de solubilização das proteínas insolúveis foram utilizados microrganismos (bactérias e fungos). Tanto as bactérias como os fungos avaliados apresentaram capacidade de solubilizar as proteínas insolúveis presentes nos resíduos (escamas, ossos, cartilagens e outros). A bactéria que atingiu a maior atividade proteolítica foi a Bacillus velesensis (47,56 U mL-1) e o fungo foi o Penicillium sp. (E20) (31,20 U mL-1). Para a produção dos hidrogéis, foram utilizados isolados protéicos provenientes de solubilização ácida ou alcalina, produzidos a partir de resíduos da industrialização de pescado, modificados quimicamente com dianidrido etilenodiamino tetraacético (EDTAD) e adicionados de agente de ligação cruzada (glutaraldeído). Algumas proteínas modificadas ainda foram submetidas a tratamento com etanol. Foram realizadas análise estrutural das proteínas modificadas e estudo da capacidade de retenção de água dos hidrogéis assim obtidos. Os hidrogéis produzidos apresentaram alta capacidade de retenção de água. A máxima absorção de água foi alcançada pelo hidrogel ácido sem o tratamento com etanol foi de 103,25 gágua/ggel seco, enquanto que a mesma amostra tratada com etanol alcançou 216,05 gágua/ggel seco. Os hidrogéis produzidos podem ser utilizados em diversas indústrias, tais como, farmacêutica, alimentícia, médica, agroindústria, entre outras, que necessitem de hidrogéis com alta capacidade de retenção de água.
Resumo:
A produção de proteínas através de microrganismos tornou-se uma técnica muito importante na obtenção de compostos de interesse da indústria farmacêutica e alimentícia. Extratos brutos nos quais as proteínas são obtidas são geralmente complexos, contendo sólidos e células em suspensão. Usualmente, para uso industrial destes compostos, é necessário obtê-los puros, para garantir a sua atuação sem interferência. Um método que vem recebendo destaque especialmente nos últimos 10 anos é o uso da cromatografia de troca iônica em leito expandido, que combina em uma única etapa os passos de clarificação, concentração e purificação da molécula alvo, reduzindo assim o tempo de operação e também os custos com equipamentos para realização de cada etapa em separado. Combinado a este fato, a última década também é marcada por trabalhos que tratam da modelagem matemática do processo de adsorção de proteínas em resinas. Está técnica, além de fornecer informações importantes sobre o processo de adsorção, também é de grande valia na otimização da etapa de adsorção, uma vez que permite que simulações sejam feitas, sem a necessidade de gasto de tempo e material com experimentos em bancada, especialmente se é desejado uma ampliação de escala. Dessa forma, o objetivo desta tese foi realizar a modelagem e simulação do processo de adsorção de bioprodutos em um caldo bruto na presença de células, usando inulinase e C-ficocianina como objeto de estudo e purificar C-ficocianina utilizando resina de troca iônica em leito expandido. A presente tese foi então dividida em quatro artigos. O primeiro artigo teve como objeto de estudo a enzima inulinase, e a otimização da etapa de adsorção desta enzima em resina de troca iônica Streamline SP, em leito expandido, foi feita através da modelagem matemática e simulação das curvas de ruptura em três diferentes graus de expansão (GE). As máximas eficiências foram observadas quando utilizadas maiores concentrações de inulinase (120 a 170 U/mL), e altura de leito entre 20 e 30 cm. O grau de expansão de 3,0 vezes foi considerado o melhor, uma vez que a produtividade foi consideravelmente superior. O segundo artigo apresenta o estudo das condições de adsorção de C-ficocianina em resina de troca iônica, onde foi verificado o efeito do pH e temperatura na adsorção e após construída a isoterma de adsorção. A isoterma de adsorção da C-ficocianina em resina Streamline Q XL feita em pH 7,5 e a 25°C (ambiente), apresentou um bom ajuste ao modelo de Langmuir (R=0,98) e os valores qm (capacidade máxima de adsorção) e Kd (constante de equilíbrio) estimados pela equação linearizada da isoterma, foram de 26,7 mg/mL e 0,067mg/mL. O terceiro artigo aborda a modelagem do processo de adsorção de extrato não clarificado de C-ficocianina em resina de troca iônica Streamline Q XL em coluna de leito expandido. Três curvas de ruptura foram feitas em diferentes graus de expansão (2,0, 2,5 e 3,0). A condição de adsorção de extrato bruto não clarificado de C-ficocianina que se mostrou mais vantajosa, por apresentar maior capacidade de adsorção, é quando se alimenta o extrato até atingir 10% de saturação da resina, em grau de expansão 2,0, com uma altura inicial de leito de 30 cm. O último artigo originado nesta tese foi sobre a purificação de C-ficocianina através da cromatografia de troca iônica em leito expandido. Uma vez que a adsorção já havia sido estudada no artigo 2, o artigo 4 enfoca na otimização das condições de eluição, visando obter um produto com máxima pureza e recuperação. A pureza é dada pela razão entre a absorbância a 620 nm pela absorbância a 280 nm, e dizse que quando C-ficocianina apresenta pureza superior a 0,7 ela pode ser usada em como corante em alimentos. A avaliação das curvas de contorno indicou que a faixa de trabalho deve ser em pH ao redor de 6,5 e volumes de eluição próximos a 150 mL. Tais condições combinadas a uma etapa de pré-eluição com 0,1M de NaCl, permitiu obter C-ficocianina com pureza de 2,9, concentração 3 mg/mL, e recuperação ao redor de 70%.