3 resultados para AZO DYES

em Repositório Institucional da Universidade Federal do Rio Grande - FURG


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypothesis: The dye adsorption with chitosan is considered an eco-friendly alternative technology in relation to the existing water treatment technologies. However, the application of chitosan for dyes removal is limited, due to its low surface area and porosity. Then we prepared a chitosan scaffold with a megaporous structure as an alternative adsorbent to remove food dyes from solutions. Experiments: The chitosan scaffold was characterized by infrared spectroscopy, scanning electron microscopy and structural characteristics. The potential of chitosan scaffold to remove five food dyes from solutions was investigated by equilibrium isotherms and thermodynamic study. The scaffold–dyes interactions were elucidated, and desorption studies were carried out. Findings: The chitosan scaffold presented pore sizes from 50 to 200 lm, porosity of 92.2 ± 1.2% and specific surface area of 1135 ± 2 m2 g 1. The two-step Langmuir model was suitable to represent the equilibrium data. The adsorption was spontaneous, favorable, exothermic and enthalpy-controlled process. Electrostatic interactions occurred between chitosan scaffold and dyes. Desorption was possible with NaOH solution (0.10 mol L 1). The chitosan megaporous scaffold showed good structural characteristics and high adsorption capacities (788–3316 mg g 1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this research, micro and nanoparticles of Spirulina platensis dead biomass were obtained, characterized and employed to removal FD&C red no. 40 and acid blue 9 synthetic dyes from aqueous solutions. The effects of particle size (micro and nano) and biosorbent dosage (from 50 to 750 mg) were studied. Pseudofirst order, pseudo-second order and Elovich models were used to evaluate the biosorption kinetics. The biosorption nature was verified using energy dispersive X-ray spectroscopy (EDS). The best results for both dyes were found using 250 mg of nanoparticles, in these conditions, the biosorption capacities were 295 mg g−1 and 1450 mg g−1, and the percentages of dye removal were 15.0 and 72.5% for the FD&C red no. 40 and acid blue 9, respectively. Pseudo-first order model was the more adequate to represent the biosorption of both dyes onto microparticles, and Elovich model was more appropriate to the biosorption onto nanoparticles. The EDS results suggested that the dyes biosorption onto microparticles occurred mainly by physical interactions, and for the nanoparticles, chemisorption was dominant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adsorption of food dyes acid blue 9 and food yellow 3 onto chitosan was optimized. Chitosan was obtained from shrimp wastes and characterized.Afull factorial design was used to analyze the effects of pH, stirring rate and contact time in adsorption capacity. In the optimal conditions, adsorption kinetics was studied and the experimental data were fitted with three kinetic models. The produced chitosan showed good characteristics for dye adsorption. The optimal conditions were: pH 3, 150rpm and 60 min for acid blue 9 and pH 3, 50rpm and 60 min for food yellow 3. In these conditions, the adsorption capacities values were 210mgg−1 and 295mgg−1 for acid blue 9 and food yellow 3, respectively. The Elovich kinetic model was the best fit for experimental data and it showed the chemical nature of dyes adsorption onto chitosan.