2 resultados para Secure operating system
em Repositorio de la Universidad de Cuenca
Resumo:
En este artículo se presenta a DeBuPa (Detección Búsqueda Pateo) un humanoide de tamaño pequeño (38 cm de alto) construido con las piezas del kit Bioloid. Del kit se ha excluido la tarjeta CM-510 para sustituirla por la tarjeta controladora Arbotix, que será la que controle los 16 motores Dynamixel Ax-12+ (para mover al robot) y 2 servomotores analógicos (para mover la cámara). Además se ha agregado un mini computador Raspberry Pi, con su cámara, para que el robot pueda detectar y seguir la pelota de forma autónoma. Todos estos componentes deben ser coordinados para que se logre cumplir la tarea de detectar, seguir y patear la pelota. Por ello se hace necesaria la comunicación entre la Arbotix y la Raspberry Pi. La herramienta empleada para ello es el framework ROS (Robot Operating System). En la Raspberry Pi se usa el lenguaje C++ y se ejecuta un solo programa encargado de captar la imagen de la cámara, filtrar y procesar para encontrar la pelota, tomar la decisión de la acción a ejecutar y hacer la petición a la Arbotix para que dé la orden a los motores de ejecutar el movimiento. Para captar la imagen de la cámara se ha utilizado la librería RasPiCam CV. Para filtrar y procesar la imagen se ha usado las librerías de OpenCV. La Arbotix, además de controlar los motores, se encarga de monitorizar que el robot se encuentre balanceado, para ello usa el sensor Gyro de Robotis. Si detecta un desbalance de un cierto tamaño puede saber si se ha caído y levantarse.
Resumo:
Se han desarrollado varios modelos prometedores para la captura digital de datos de movilidad, que pueden ser aplicados en la planificación urbana, de transporte y de ordenamiento territorial. Por ello el objetivo de este trabajo es desarrollar una metodología que recolecte información de movilidad con la cual se generen matrices Origen-Destino (OD) y de tiempos de viajes, además que identifique puntos de interés, modos y rutas frecuentes de viaje mediante el desarrollo e implementación de una aplicación para dispositivos móviles Android. Metodología: Se produjo una aplicación para dispositivos móviles con sistema operativo Android, en base a modelos existentes. Esta aplicación obtuvo datos de movilidad a partir de los sensores de localización incorporados en los móviles (GPS), para su posterior migración a una base de datos en la nube y consiguiente post proceso con herramientas de análisis como KNIME, Python y QuantumGis. La aplicación fue probada por 68 estudiantes voluntarios de la Universidad de Cuenca, durante 14 días del mes de enero de 2016. Resultados: Con la información completa de 44 participantes se obtuvieron matrices OD y de tiempos de viajes para diferentes períodos del día, las cuales permitieron identificar variaciones de interacción entre zonas, variaciones de número y tiempo de viajes. Fueron reconocidos también modos de transporte como caminata, bicicleta y motorizados para una sub muestra (n=6). Se detectaron los POIs Residencia (91%), Trabajo/Estudio (74%) y puntos intermedios (20% del total de POIs) y se logró observar comportamientos de movilidad atípico. Finalmente se compararon las rutas más frecuentadas por los usuarios con las rutas óptimas teóricas calculadas, encontrando que el 63.6% de los usuarios coincidían con el recorrido de estas últimas. Conclusiones: El método planteado presenta coherencia con trabajos previos, mostrando niveles de confianza equiparables. El mayor reto es la implementación masiva del modelo creado para la recolección de datos útiles para planes de movilidad.