1 resultado para Artificial Lift
em Repositorio de la Universidad de Cuenca
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (12)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (1)
- Aquatic Commons (79)
- Archive of European Integration (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (4)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (2)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (14)
- Biblioteca Digital de la Universidad Católica Argentina (4)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- Boston University Digital Common (1)
- Brock University, Canada (2)
- Cambridge University Engineering Department Publications Database (107)
- CentAUR: Central Archive University of Reading - UK (48)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (55)
- Cochin University of Science & Technology (CUSAT), India (6)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (3)
- Department of Computer Science E-Repository - King's College London, Strand, London (3)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Montana Tech (1)
- Digital Commons @ Winthrop University (1)
- Diposit Digital de la UB - Universidade de Barcelona (3)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (9)
- Greenwich Academic Literature Archive - UK (4)
- Helda - Digital Repository of University of Helsinki (3)
- Indian Institute of Science - Bangalore - Índia (45)
- Infoteca EMBRAPA (6)
- Instituto Politécnico do Porto, Portugal (8)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (14)
- Massachusetts Institute of Technology (6)
- Ministerio de Cultura, Spain (10)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (18)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (116)
- Queensland University of Technology - ePrints Archive (81)
- RDBU - Repositório Digital da Biblioteca da Unisinos (2)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (4)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório Científico do Instituto Politécnico de Santarém - Portugal (1)
- Repositorio de la Universidad de Cuenca (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (2)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (1)
- Repositorio Institucional de la Universidad Nacional Agraria (8)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (103)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (3)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- School of Medicine, Washington University, United States (2)
- Universidad Autónoma de Nuevo León, Mexico (9)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (2)
- Universidade dos Açores - Portugal (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (42)
- Universitat de Girona, Spain (5)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (4)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (1)
- University of Southampton, United Kingdom (1)
Resumo:
Maximizar la producción de pozos de crudo pesado y extra pesado es el principal beneficio que se desea obtener de los sistemas de control que están corrientemente operativos en empresas de petróleo. Dada la naturaleza compleja y cambiante con el tiempo de los métodos existentes de levantamiento artificial para extracción de crudo, se dificulta el cumplimiento de las especificaciones pre establecidas para el procesamiento del crudo por parte de los lazos de control regulatorios. Tomando esto en cuenta, en éste trabajo se propone un sistema de supervisión inteligente que permite detectar cambios en las condiciones de operación del proceso productivo y realizar ajustes automáticos de sus consignas. Además, el sistema supervisor propuesto tiene la capacidad de detectar fallas en los sensores involucrados en los lazos de control, garantizando de esta manera una operación confiable del proceso. La propuesta fue probada en un pozo de petróleo real obteniéndose resultados que superaron las expectativas iniciales.