3 resultados para load balancing algorithm
em Reposit
Resumo:
Solving a complex Constraint Satisfaction Problem (CSP) is a computationally hard task which may require a considerable amount of time. Parallelism has been applied successfully to the job and there are already many applications capable of harnessing the parallel power of modern CPUs to speed up the solving process. Current Graphics Processing Units (GPUs), containing from a few hundred to a few thousand cores, possess a level of parallelism that surpasses that of CPUs and there are much less applications capable of solving CSPs on GPUs, leaving space for further improvement. This paper describes work in progress in the solving of CSPs on GPUs, CPUs and other devices, such as Intel Many Integrated Cores (MICs), in parallel. It presents the gains obtained when applying more devices to solve some problems and the main challenges that must be faced when using devices with as different architectures as CPUs and GPUs, with a greater focus on how to effectively achieve good load balancing between such heterogeneous devices.
Resumo:
A replicação de base de dados tem como objectivo a cópia de dados entre bases de dados distribuídas numa rede de computadores. A replicação de dados é importante em várias situações, desde a realização de cópias de segurança da informação, ao balanceamento de carga, à distribuição da informação por vários locais, até à integração de sistemas heterogéneos. A replicação possibilita uma diminuição do tráfego de rede, pois os dados ficam disponíveis localmente possibilitando também o seu acesso no caso de indisponibilidade da rede. Esta dissertação baseia-se na realização de um trabalho que consistiu no desenvolvimento de uma aplicação genérica para a replicação de bases de dados a disponibilizar como open source software. A aplicação desenvolvida possibilita a integração de dados entre vários sistemas, com foco na integração de dados heterogéneos, na fragmentação de dados e também na possibilidade de adaptação a várias situações. ABSTRACT: Data replication is a mechanism to synchronize and integrate data between distributed databases over a computer network. Data replication is an important tool in several situations, such as the creation of backup systems, load balancing between various nodes, distribution of information between various locations, integration of heterogeneous systems. Replication enables a reduction in network traffic, because data remains available locally even in the event of a temporary network failure. This thesis is based on the work carried out to develop an application for database replication to be made accessible as open source software. The application that was built allows for data integration between various systems, with particular focus on, amongst others, the integration of heterogeneous data, the fragmentation of data, replication in cascade, data format changes between replicas, master/slave and multi master synchronization.
Resumo:
This paper presents a methodology for short-term load forecasting based on genetic algorithm feature selection and artificial neural network modeling. A feed forward artificial neural network is used to model the 24-h ahead load based on past consumption, weather and stock index data. A genetic algorithm is used in order to find the best subset of variables for modeling. Three data sets of different geographical locations, encompassing areas of different dimensions with distinct load profiles are used in order to evaluate the methodology. The developed approach was found to generate models achieving a minimum mean average percentage error under 2 %. The feature selection algorithm was able to significantly reduce the number of used features and increase the accuracy of the models.