2 resultados para Unobserved Components Model
em Reposit
Resumo:
Solar radiation takes in today's world, an increasing importance. Different devices are used to carry out spectral and integrated measurements of solar radiation. Thus the sensors can be divided into the fallow types: Calorimetric, Thermomechanical, Thermoelectric and Photoelectric. The first three categories are based on components converting the radiation to temperature (or heat) and then into electrical quantity. On the other hand, the photoelectric sensors are based on semiconductor or optoelectronic elements that when irradiated change their impedance or generate a measurable electric signal. The response function of the sensor element depends not only on the intensity of the radiation but also on its wavelengths. The radiation sensors most widely used fit in the first categories, but thanks to the reduction in manufacturing costs and to the increased integration of electronic systems, the use of the photoelectric-type sensors became more interesting. In this work we present a study of the behavior of different optoelectronic sensor elements. It is intended to verify the static response of the elements to the incident radiation. We study the optoelectronic elements using mathematical models that best fit their response as a function of wavelength. As an input to the model, the solar radiation values are generated with a radiative transfer model. We present a modeling of the spectral response sensors of other types in order to compare the behavior of optoelectronic elements with other sensors currently in use.
Resumo:
In aircraft components maintenance shops, components are distributed amongst repair groups and their respective technicians based on the type of repair, on the technicians skills and workload, and on the customer required dates. This distribution planning is typically done in an empirical manner based on the group leader’s past experience. Such a procedure does not provide any performance guarantees, leading frequently to undesirable delays on the delivery of the aircraft components. Among others, a fundamental challenge faced by the group leaders is to decide how to distribute the components that arrive without customer required dates. This paper addresses the problems of prioritizing the randomly arriving of aircraft components (with or without pre-assigned customer required dates) and of optimally distributing them amongst the technicians of the repair groups. We proposed a formula for prioritizing the list of repairs, pointing out the importance of selecting good estimators for the interarrival times between repair requests, the turn-around-times and the man hours for repair. In addition, a model for the assignment and scheduling problem is designed and a preliminary algorithm along with a numerical illustration is presented.