3 resultados para Time-shift estimation
em Reposit
Resumo:
Waiting time at an intensive care unity stands for a key feature in the assessment of healthcare quality. Nevertheless, its estimation is a difficult task, not only due to the different factors with intricate relations among them, but also with respect to the available data, which may be incomplete, self-contradictory or even unknown. However, its prediction not only improves the patients’ satisfaction but also enhance the quality of the healthcare being provided. To fulfill this goal, this work aims at the development of a decision support system that allows one to predict how long a patient should remain at an emergency unit, having into consideration all the remarks that were just stated above. It is built on top of a Logic Programming approach to knowledge representation and reasoning, complemented with a Case Base approach to computing.
Resumo:
Above ground biomass is frequently estimated with forest inventory data and an extrapolation method for the per unit area evaluations. This procedure is labour demanding and costly. In this study above ground biomass functions, whose independent variable is crown horizontal projection, were developed. Multi-resolution segmentation method and object-oriented classification, based on very high spatial resolution satellite images, were used to obtain the area of tree crown horizontal projection for umbrella pine (Pinus pinea L.). A set of inventory plots were measured and with existing allometric functions for this species above ground biomass per tree and per plot were calculated. The two data sets were used to fit linear functions both for individual plot and their cumulative values. The results show a good performance of the models. Errors smaller than 10% are obtained for stand areas greater than 1.4 ha. These functions have the advantages of estimating above ground biomass for all the area under study or surveillance, not requiring forest inventory; allow monitoring in short time periods; and are easily implemented in a geographical information system environment.
Resumo:
We use a probing strategy to estimate the time dependent traffic intensity in an Mt/Gt/1 queue, where the arrival rate and the general service-time distribution change from one time interval to another, and derive statistical properties of the proposed estimator. We present a method to detect a switch from a stationary interval to another using a sequence of probes to improve the estimation. At the end, we compare our results with two estimators proposed in the literature for the M/G/1 queue.