1 resultado para Optimal Stochastic Control
em Reposit
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Abertay Research Collections - Abertay University’s repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (15)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (8)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Aston University Research Archive (32)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (13)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (244)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (22)
- Brock University, Canada (4)
- Bulgarian Digital Mathematics Library at IMI-BAS (14)
- CaltechTHESIS (1)
- CentAUR: Central Archive University of Reading - UK (66)
- Cochin University of Science & Technology (CUSAT), India (1)
- Coffee Science - Universidade Federal de Lavras (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (19)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- CUNY Academic Works (3)
- Dalarna University College Electronic Archive (2)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Commons - Michigan Tech (14)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (13)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (15)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (3)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Glasgow Theses Service (2)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (3)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico do Porto, Portugal (10)
- Martin Luther Universitat Halle Wittenberg, Germany (2)
- Massachusetts Institute of Technology (3)
- National Center for Biotechnology Information - NCBI (3)
- Nottingham eTheses (2)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (6)
- Repositório da Produção Científica e Intelectual da Unicamp (23)
- Repositório digital da Fundação Getúlio Vargas - FGV (5)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (109)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (8)
- Scielo Saúde Pública - SP (6)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (2)
- The Scholarly Commons | School of Hotel Administration; Cornell University Research (1)
- Universidad de Alicante (5)
- Universidad del Rosario, Colombia (6)
- Universidad Politécnica de Madrid (25)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (2)
- Universidade Federal do Pará (1)
- Universitat de Girona, Spain (4)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (31)
- Université de Montréal (1)
- Université de Montréal, Canada (6)
- University of Connecticut - USA (4)
- University of Michigan (3)
- University of Queensland eSpace - Australia (158)
- University of Washington (2)
Resumo:
This paper presents a computer application for wind energy bidding in a day-ahead electricity market to better accommodate the variability of the energy source. The computer application is based in a stochastic linear mathematical programming problem. The goal is to obtain the optimal bidding strategy in order to maximize the revenue. Electricity prices and financial penalties for shortfall or surplus energy deliver are modeled. Finally, conclusions are drawn from an illustrative case study, using data from the day-ahead electricity market of the Iberian Peninsula.