2 resultados para Linear Analytical Systems

em Reposit


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pretende-se desenvolver um Data Warehouse para um grupo empresarial constituído por quatro empresas, tendo como objectivo primordial a consolidação de informação. A consolidação da informação é de extrema utilidade, uma vez que as empresas podem ter dados comuns, tais como, produtos ou clientes. O principal objectivo dos sistemas analíticos é permitir analisar os dados dos sistemas transacionais da organização, fazendo com que os utilizadores que nada percebem destes sistemas consigam ter apoio nas tomadas decisão de uma forma simples e eficaz. A utilização do Data Warehouse é útil no apoio a decisões, uma vez que torna os utilizadores autónomos na realização de análises. Os utilizadores deixam de estar dependentes de especialistas em informática para efectuar as suas consultas e passam a ser eles próprios a realizá-las. Por conseguinte, o tempo de execução de uma consulta através do Data Warehouse é de poucos segundos, ao contrário das consultas criadas anteriormente pelos especialistas que por vezes demoravam horas a ser executadas. __ ABSTRACT: lt is intended to develop a Data Warehouse for a business related group of four companies, having by main goal the information consolidation. This information consolidation is of extreme usefulness since the companies can have common data, such as products or customers. The main goal of the analytical systems is to allow analyze data from the organization transactional systems, making that the users that do not understand anything of these systems may have support in a simple and effective way in every process of taking decisions. Using the Data Warehouse is useful to support decisions, once it will allow users to become autonomous in carrying out analysis. Users will no longer depend on computer experts to make their own queries and they can do it themselves. Therefore, the time of a query through the Data Warehouse takes only a few seconds, unlike the earlier queries created previously by experts that sometimes took hours to run.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We generalize the Liapunov convexity theorem's version for vectorial control systems driven by linear ODEs of first-order p = 1 , in any dimension d ∈ N , by including a pointwise state-constraint. More precisely, given a x ‾ ( ⋅ ) ∈ W p , 1 ( [ a , b ] , R d ) solving the convexified p-th order differential inclusion L p x ‾ ( t ) ∈ co { u 0 ( t ) , u 1 ( t ) , … , u m ( t ) } a.e., consider the general problem consisting in finding bang-bang solutions (i.e. L p x ˆ ( t ) ∈ { u 0 ( t ) , u 1 ( t ) , … , u m ( t ) } a.e.) under the same boundary-data, x ˆ ( k ) ( a ) = x ‾ ( k ) ( a ) & x ˆ ( k ) ( b ) = x ‾ ( k ) ( b ) ( k = 0 , 1 , … , p − 1 ); but restricted, moreover, by a pointwise state constraint of the type 〈 x ˆ ( t ) , ω 〉 ≤ 〈 x ‾ ( t ) , ω 〉 ∀ t ∈ [ a , b ] (e.g. ω = ( 1 , 0 , … , 0 ) yielding x ˆ 1 ( t ) ≤ x ‾ 1 ( t ) ). Previous results in the scalar d = 1 case were the pioneering Amar & Cellina paper (dealing with L p x ( ⋅ ) = x ′ ( ⋅ ) ), followed by Cerf & Mariconda results, who solved the general case of linear differential operators L p of order p ≥ 2 with C 0 ( [ a , b ] ) -coefficients. This paper is dedicated to: focus on the missing case p = 1 , i.e. using L p x ( ⋅ ) = x ′ ( ⋅ ) + A ( ⋅ ) x ( ⋅ ) ; generalize the dimension of x ( ⋅ ) , from the scalar case d = 1 to the vectorial d ∈ N case; weaken the coefficients, from continuous to integrable, so that A ( ⋅ ) now becomes a d × d -integrable matrix; and allow the directional vector ω to become a moving AC function ω ( ⋅ ) . Previous vectorial results had constant ω, no matrix (i.e. A ( ⋅ ) ≡ 0 ) and considered: constant control-vertices (Amar & Mariconda) and, more recently, integrable control-vertices (ourselves).