4 resultados para Data-driven knowledge acquisition

em Reposit


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a process for the classifi cation of new residential electricity customers. The current state of the art is extended by using a combination of smart metering and survey data and by using model-based feature selection for the classifi cation task. Firstly, the normalized representative consumption profi les of the population are derived through the clustering of data from households. Secondly, new customers are classifi ed using survey data and a limited amount of smart metering data. Thirdly, regression analysis and model-based feature selection results explain the importance of the variables and which are the drivers of diff erent consumption profi les, enabling the extraction of appropriate models. The results of a case study show that the use of survey data signi ficantly increases accuracy of the classifi cation task (up to 20%). Considering four consumption groups, more than half of the customers are correctly classifi ed with only one week of metering data, with more weeks the accuracy is signifi cantly improved. The use of model-based feature selection resulted in the use of a signifi cantly lower number of features allowing an easy interpretation of the derived models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stroke stands for one of the most frequent causes of death, without distinguishing age or genders. Despite representing an expressive mortality fig-ure, the disease also causes long-term disabilities with a huge recovery time, which goes in parallel with costs. However, stroke and health diseases may also be prevented considering illness evidence. Therefore, the present work will start with the development of a decision support system to assess stroke risk, centered on a formal framework based on Logic Programming for knowledge rep-resentation and reasoning, complemented with a Case Based Reasoning (CBR) approach to computing. Indeed, and in order to target practically the CBR cycle, a normalization and an optimization phases were introduced, and clustering methods were used, then reducing the search space and enhancing the cases re-trieval one. On the other hand, and aiming at an improvement of the CBR theo-retical basis, the predicates` attributes were normalized to the interval 0…1, and the extensions of the predicates that match the universe of discourse were re-written, and set not only in terms of an evaluation of its Quality-of-Information (QoI), but also in terms of an assessment of a Degree-of-Confidence (DoC), a measure of one`s confidence that they fit into a given interval, taking into account their domains, i.e., each predicate attribute will be given in terms of a pair (QoI, DoC), a simple and elegant way to represent data or knowledge of the type incomplete, self-contradictory, or even unknown.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well known that human resources play a valuable role in a sustainable organizational development. Indeed, this work will focus on the development of a decision support system to assess workers’ satisfaction based on factors related to human resources management practices. The framework is built on top of a Logic Programming approach to Knowledge Representation and Reasoning, complemented with a Case Based approach to computing. The proposed solution is unique in itself, once it caters for the explicit treatment of incomplete, unknown, or even self-contradictory information, either in terms of a qualitative or quantitative setting. Furthermore, clustering methods based on similarity analysis among cases were used to distinguish and aggregate collections of historical data or knowledge in order to reduce the search space, therefore enhancing the cases retrieval and the overall computational process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A problemática relacionada com a modelação da qualidade da água de albufeiras pode ser abordada de diversos pontos de vista. Neste trabalho recorre-se a metodologias de resolução de problemas que emanam da Área Cientifica da Inteligência Artificial, assim como a ferramentas utilizadas na procura de soluções como as Árvores de Decisão, as Redes Neuronais Artificiais e a Aproximação de Vizinhanças. Actualmente os métodos de avaliação da qualidade da água são muito restritivos já que não permitem aferir a qualidade da água em tempo real. O desenvolvimento de modelos de previsão baseados em técnicas de Descoberta de Conhecimento em Bases de Dados, mostrou ser uma alternativa tendo em vista um comportamento pró-activo que pode contribuir decisivamente para diagnosticar, preservar e requalificar as albufeiras. No decurso do trabalho, foi utilizada a aprendizagem não-supervisionada tendo em vista estudar a dinâmica das albufeiras sendo descritos dois comportamentos distintos, relacionados com a época do ano. ABSTRACT: The problems related to the modelling of water quality in reservoirs can be approached from different viewpoints. This work resorts to methods of resolving problems emanating from the Scientific Area of Artificial lntelligence as well as to tools used in the search for solutions such as Decision Trees, Artificial Neural Networks and Nearest-Neighbour Method. Currently, the methods for assessing water quality are very restrictive because they do not indicate the water quality in real time. The development of forecasting models, based on techniques of Knowledge Discovery in Databases, shows to be an alternative in view of a pro-active behavior that may contribute to diagnose, maintain and requalify the water bodies. ln this work. unsupervised learning was used to study the dynamics of reservoirs, being described two distinct behaviors, related to the time of year.