3 resultados para volcanic aerosols
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
The Deccan Volcanic Province (DVP) was built up by three major phases of eruptions; the most voluminous of which, the Deccan Phase 2, encompassed the Cretaceous–Palaeogene (KT) boundary. Deccan eruptions have been implicated as a contributor to the end-Cretaceous mass extinction, however, mechanism by which volcanic activity affected biota remains poorly understood. We applied a combination of rock magnetic techniques scanning electron microscopy to characterize mineral assemblages of three sections of intertrappean lacustrine sediments from the north-western Maharashtra Deccan Volcanic Provinces. Our results indicate that in sediments deposited during the early stages of the Deccan Phase 2, the Daïwal River and Dhapewada sequences, iron-bearing mineral association is dominated by detrital iron oxides (magnetite and hematite) sourced from the weathering of the surrounding basaltic bedrocks, with minor contribution form authigenic iron sulphides (framboidal pyrite, pyrrhotite and/or greigite). The sediments deposited during the final stages of Phase 2 (the Podgawan sequence) differ significantly in their characteristics. In particular, the Podgawan sediments have 1) very low magnetic susceptibility values, but higher terrigenous fraction (clays and shales) content; 2) more complex assemblage of magnetic minerals, 3) ubiquitous presence of Fe–Ca–Ce vanadates; and 4) unusual lithological variations in the middle part of the section (represented by a charcoal-rich level that is capped by a red clay layer containing fossilized bacterial colonies). We suggest that these unusual characteristics reflect increased acidity in the region during the deposition of the Podgawan sequence, likely due to cumulative effects of volcanic aerosols released during the Deccan Phase 2 eruptions. The combination of these features may be used to recognize episodes of increased acidity in the geological record. Our results also contribute to understanding of local vs. global effects of the Deccan volcanism.
Resumo:
Poilão dam reservoir (Cape Verde Archipelago) is in critical conditions, owing the excessive silting up, the high concentration of nitrates and the pronounced anoxia all over the lake. Considering that the most suitable remediation strategy is the removal of the bottom sediments where nutrients are preferentially concentrated, we have done a geochemical study, in order of evaluating their suitability to agricultural use. Analyses indicate that sediments are rich in a few key nutrients, when compared with parent soils. Thus, adding suitable sediments to nearby degraded soils can improve food crops for smallholder farmers living in close proximity to this system.
Resumo:
The most recent submarine eruption observed offshore the Azores archipelago occurred between 1998-2001 along the submarine Serreta ridge (SSR), ~4-5 nautical miles WNW of Terceira Island. This submarine eruption delivered abundant basaltic lava balloons floating at the sea surface and significantly changed the bathymetry around the eruption area. Our work combines bathymetry, volcanic facies cartography, petrography, rock magnetism and geochemistry in order to (1) track the possible vent source at seabed, (2) better constrain the Azores magma source(s) sampled through the Serreta submarine volcanic event, and (3) interpret the data within the small-scale mantle source heterogeneity framework that has been demonstrated for the Azores archipelago. Lava balloons sampled at sea surface display a radiogenic signature, which is also correlated with relatively primitive (low) 4He/3He isotopic ratios. Conversely, SSR lavas are characterized by significantly lower radiogenic 87Sr/86Sr, 206Pb/204Pb and 208Pb/204Pb ratios than the lava balloons and the onshore lavas from the Terceira Island. SSR lavas are primitive, but incompatible trace-enriched. Apparent decoupling between the enriched incompatible trace element abundances and depleted radiogenic isotope ratios is best explained by binary mixing of a depleted MORB source and a HIMUtype component into magma batches that evolved by similar shallower processes in their travel to the surface. The collected data suggest that the freshest samples collected in the SSR may correspond to volcanic products of an unnoticed and more recent eruption than the 1998-2001 episode.