2 resultados para virtual legal reality
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
Esta tese pretende descrever o desenvolvimento e arquitectura do software que constitui o Miradouro Virtual@, mais especificamente do componente referente à interface. O Miradouro Virtual@ é um dispositivo cujo propósito à semelhança dos tradicionais binóculos turísticos, é observar a paisagem, mas cuja interacção não está limitada à simples observação individual. Recorre à realidade aumentada para sobrepôr imagens geradas por computador a imagens reais, capturadas por um dispositivo para aquisição de imagem real (tipicamente uma câmara de vídeo), e mostra-as num ecrã touchscreen, permitindo deste modo, combinar elementos virtuais e multimédia com a paisagem real. A imagem final, composta, dá ao utilizador uma nova dimensão do espaço envolvente, permitindo-lhe explorar uma nova camada de informação não visível anteriormente. Sendo sensíveis à orientação do Miradouro Virtual@, os elementos virtuais e multimédia adaptam-se de acordo com os movimentos do dispositivo. O Miradouro Virtual@ é um produto composto por diversos elementos de hardware e software. O foco desta tese recai apenas nos componentes de software, mais especificamente na interface. Pretende dar a conhecer as limitações da versão anterior do software e mostrar as soluções encontradas que permitiram ultrapassar algumas dessas limitações. ABSTRACT; This thesis focuses on the design and development of the Virtual Sightseeing™ software, more specifically on the interface component. The Virtual Sightseeing™ is a device similar to the traditional scenic viewers that takes advantage of its generally known and popularity to build an innovative system. It works by using augmented reality to superimpose, in real-time, images generated by a computer onto a live stream captured by a video camera and displaying them on a touchscreen display. It allows adding multimedia elements to the real scenery by composing them in the image that is presented to the user. The multimedia information and virtual elements that are displayed are sensitive to the orientation and position of the device. They change as the user manually changes the orientation of the device. The Virtual Sightseeing™ is comprised of several hardware and software components. The focus of this thesis is on the software part, more specifically on the interface component. It intends to show the known limitations of the previous software version and how they were overcome in this new version.
Resumo:
Cork oak tree (Quercus suber L.), in Portugal, is considered the national tree and have special demands and legal protection when dealing with silviculture management (pruning, debarking, thinning). Being a species of slow growth, cork oak transplanting procedures can be a valuable asset either from the economic or ecological rationales to relocate trees, re-populate areas affected by high tree mortality, increase tree density to control erosion on montado ecosystems or landscape design. This study focuses the impacts and physiological responses of ten juvenile rain fed cork oak trees (with diameter at breast height between 6 and 16cm), when subjected to transplant operations. The work was conducted in a cork oak woodland experimental plot at the campus of the University of Évora (SW Portugal), during the year of 2015. Tree’s transplants were performed with a truck-mounted hydraulic spade transplanter coupled with a proposed methodology to maximize tree survival rates, addressing techniques to limit canopy transpiration and to improve root systems prior to transplant. Tree ecophysiological indicators (sap flow, leaf water potentials and stomatal conductance) were monitored comprising the periods before and after transplant operations, and water stress avoidance practices were established to promote post-transplant tree status recovery, including irrigation to match average daily accumulated sap flow. Transplant operations were considered successful when the tree's water uptake inferred from sap flow exhibited a high correlation with solar radiation and returned to its undisturbed or pre-transplant water potential gradients in the following 2 to 3 weeks. The post-transplant tree nourishment follow up included permanent sap flow measurements and identified the time elapsed after transplantation from which the tree recovers its normal transpiration thresholds and response. Our results suggest that by following the proposed methodology the sampled cork oak trees exhibited a transplant success rate of 90%.