8 resultados para uplift

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the Vi la de Rei arca (Central Portugal) the continental deposits ofthe Lower Tagus Tertiary 8asin lay upon the pediment of me Portuguese Central Chain. Three ronglomerate units are recorded from me base upwards. separated by regional or basinal unconfonnities: Conglomerados de Rio de Moinhos (RM); Conglomerados de Serra de Almeirim (SA) and Conglomerados de Vila de Rei (VR). The first two units (KM and SAl have been si les of gold exploitation in huge optn pit mines probably dunng Roman colonisation times. The contact ofthis units, on thc Paleozoie basement or on the Paleogene unil Grés de Monsanto, is unconfonn, defining in both limits a large nondepositional andlor erosional hiatus. Those conglomerates seal the scdimcntation ofthe Lower Tagus Tertiary Basin along irs northem border. Taking lnto account lhe significance /lssigned to their basinal unconfonnity limits, lhe uplift ofthe Portuguese Centra! Chain. and thc facl ofthis continental units yielded no fossils with chranostratigraphic significanee, they have been eonsidered ranging fram Uppcr Miocene to lhe beginning ofthe Qualemary. Finally, a lithostratigraphic equivalence with lhe Neogenic units ofthc Bierzo and Duema basins (NW ofthe Iberian Peninsula), where exploitalions from Roman limes are also evident, is presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As unidades estratigráficas que resultaram da evolução do rio Tejo em Portugal, aqui analisadas em pormenor entre Vila Velha de Ródão e Chamusca, possuem distintas características sedimentares e indústrias líticas: uma unidade culminante do enchimento sedimentar (o ancestral Tejo, antes do início da etapa de incisão fluvial) - SLD13 (+142 a 262 m acima do leito actual; com provável idade 3,6 a 1,8 Ma), sem indústrias identificadas; terraço T1 (+76 a 180 m; ca. 1000? a 900 ka), sem indústrias; terraço T2 (+57 a 150 m; idade estimada em ca. 600 ka), sem indústrias; terraço T3 (+36 a 113 m; ca. 460 a 360? ka), sem indústrias; terraço T4 (+26 a 55 m; ca. 335 a 155 ka), Paleolítico Inferior (Acheulense) em níveis da base e intermédios mas Paleolítico Médio inicial em níveis do topo; terraço T5 (+5 a 34 m; 135 a 73 ka), Paleolítico Médio (com talhe Mustierense, Levallois); terraço T6 (+3 a 14 m; 62 a 32 ka), Paleolítico Médio final (Mustierense final); Areias da Carregueira (areias eólicas) e coluviões (+3 a ca. 100 m; 32 a 12 ka), Paleolítico Superior a Epipaleolítico; enchimento da planície aluvial (+0 a 8 m; ca. 12 ka a actual), Mesolítico e indústrias mais recentes. As diferenças na elevação (a.r.b.) das escadarias de terraços resultam de soerguimento diferencial, devido a falhas ativas. Numa dada escadaria datada, a projeção da elevação da superfície de cada terraço (a.r.b.) versus a sua idade permitiu estimar a idade do topo do terraço T2 (ca. 600 ka) e a provável idade do início da etapa de incisão (ca. 1,8 Ma). Obteve-se a duração da fase de agradação dos terraços baixos e médios: T6 – 30 ka; T5 – 62 ka; T4 – ca. 180 ka; T3 – ca. 100? ka. Conclui-se que durante o Plistocénico médio e final, as fases de incisão e alargamento do vale foram curtas (ca. 11-25 ka) e ocorreram durante períodos de nível do mar muito baixo, alternando com mais longas fases de inundação e agradação do vale durante níveis do mar mais altos. Estas oscilações eustáticas de causa climática estão sobrepostas a um contexto de soerguimento de longo termo, controlando o desenvolvimento das escadarias. Calculou-se que para os últimos ca. 155 ka as taxas de incisão de curto-termo apresentam valores (0,09 a 0,41 m/ka), aproximadamente, duplos dos calculados para o intervalo ca. 155 a 900 ka (0,04 a 0,28 m/ka). Este aumento na taxa de incisão deve estar relacionado com um aumento na taxa de soerguimento por intensificação da compressão devido à convergência entre as placas Africana e Eurasiática. Abstract: The terrace staircases of the Lower Tagus River (Ródão to Chamusca) – characterization and interpretation of the sedimentary, tectonic, climatic and Palaeolithic data The stratigraphic units that record the evolution of the Tagus River in Portugal (study area between Vila Velha de Ródão and Chamusca villages) have different sedimentary characteristics and lithic industries: a culminant sedimentary unit (the ancestral Tagus, before the drainage network entrenchment) – SLD13 (+142 to 262 m above river bed – a.r.b.; with probable age 3.6 to 1.8 Ma), without artefacts; T1 terrace (+76 to 180 m; ca. 1000? to 900 ka), without artefacts; T2 terrace (+57 to 150 m; top deposits with a probable age ca. 600 ka), without artefacts; T3 terrace (+36 to 113 m; ca. 460 to 360? ka), without artefacts; T4 terrace (+26 to 55 m; ca. 335 a 155 ka), Lower Paleolithic (Acheulian) at basal and middle levels but early Middle Paleolithic at top levels; T5 terrace (+5 to 34 m; 135 to 73 ka), Middle Paleolithic (Mousterian; Levallois technique); T6 terrace (+3 to 14 m; 62 to 32 ka), late Middle Paleolithic (late Mousterian); Carregueira Sands (aeolian sands) and colluvium (+3 a ca. 100 m; 32 to 12 ka), Upper Paleolithic to Epipaleolithic; alluvial plain (+0 to 8 m; ca. 12 ka to present), Mesolithic and more recent industries. The differences in elevation (a.r.b.) of the several terrace staircases results from differential uplift due to active faults. The age interval for each aggradation phase of T3 to T6 terraces was obtained: T3 – ca. 100? ka; T4 – ca. 180 ka; T5 – 62 ka; T6 – 30 ka. The intervals of river down-cutting and widening of the valley floor were short (ca. 11-25 ka) and coincided with periods of very low sea-level. The plotting of the elevation (a.r.b.) versus the age of each terrace surface allows to estimate the age of the T2 terrace (ca. 600 ka) and the probable age of the beginning of the incision stage (ca. 1.8 Ma). So, the high amplitude sea-level changes that characterized the Middle and Late Pleistocene strongly determined the episodic down-cutting phases of the river during the low stands sea levels that alternated with the flooding and aggradation phases of the incised valley during highstand sea levels. These climate related eustatic oscillations are superimposed onto a long term uplift pattern, controlling the river terrace staircase development. During the last ca. 155 ka, the short-term incision rates (0.09 a 0.41 m/ka) were twice the values determined for the interval 155 to 900 ka (0.04 to 0.28 m/ka). This increase in incision rate should be related with an increase in uplift rate resulting from an intensification of compression due to the convergence between African - Eurasian plates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study examines the long profiles of tributaries of the Tejo (Tagus) and Zêzere rivers in central eastern Portugal (West Iberia) in order to provide new insights into the patterns, timing and controls on drainage development during the Pleistocene to Holocene incision stage. The long profiles were extracted from lower order tributary streams associated with the trunk drainage of the Tejo River and one main tributary, the Zêzere River (Fig. 1). These streams flow through a landscape strongly influenced by variations in bedrock lithology (mainly granites and metasediments), fault structures delimiting crustal blocks with distinct uplift rates, and a base-level lowering history (tectonic uplift / eustatic). The long profiles of the tributaries of the Tejo and Zêzere rivers record a series of transient and permanent knickpoints. The permanent knickpoints have direct correlation with the bedrock strength, corresponding to the outcropping of very hard quartzites or to the transition from softer (slates/metagreywaques) to harder (granite) basement. The analyzed streams/rivers record also an older transient knickpoint/knickzone separating: a) an upstream relict graded profile, with lower steepness and higher concavity, that reflects a long period of quasi-equilibrium conditions reached after the beginning of the incision stage; and b) a downstream reach displaying a rejuvenated long profile, with steeper gradient and lower concavity, particularly for the final segment, which is often convex (Fig. 2). The rejuvenated reaches testify the upstream propagation of several incision waves that are the response of each stream to continuous or increasing crustal uplift and dominant periods of base-level lowering by the trunk drainages, coeval of low sea level conditions. The long profiles and their morphological configurations enabled spatial and relative temporal patterns of incision to be quantified for each individual tributary stream. The incision values of streams flowing in uplifted blocks of the Portuguese Central Range (PCR) (ca.380-280 m) indicate differential uplift and are higher than the incision values of streams flowing on the adjacent South Portugal planation surface – the Meseta (ca. 200 m). The normalized steepness index, calculated using the method of Wobus et al. (2006), proved to be sensitive to active tectonics, as lower ksn values were found in relict graded profiles of streams located in less uplifted blocks, (e.g. Sertã stream in the PCR), or in those flowing through tectonic depressions. Fig. 1 – Geological map of the study area. 1 – fluvial terraces (Pleistocene); 2 – sedimentary cover (Paleogene and Neogene); 3 – slates and metasandstones (Devonian); 4 – slates and quartzites (Silurian); 5 – quartzites (Ordovician); 6 – slates and metagreywackes (Precambrian to Cambrian); 7 – slates, metagreywackes and limestones (Precambrian); 8 – granites and ortogneisses; 9 – diorites and gabros; 10 - fault. SFf – Sobreira Formosa fault; Sf – Sertã fault; Pf – Ponsul fault; Gf – Grade fault. The differential uplift indicated by the distribution of the ksn values and by the fluvial incision was likely accumulated on a few major faults, as the Sobreira Formosa fault (SFf), thus corroborating the tectonic activity of these faults. Due to the fact that the relict graded profiles can be correlated with other geomorphic references documented in the study area, namely the T1 terrace of the Tagus River (with an age of ca. 1 Myr), the following incision rates can be estimated: a) for the studied streams located in uplifted blocks of the PCR, 0.38 m/kyr to 0.28 m/kyr; b) for the streams flowing on the South Portugal planation surface, 0.20 m/kyr. The differential uplift inferred between crustal blocks in the study area corroborates the neotectonic activity of the bordering faults, which has been proposed in previous studies based upon less robust data. Fig. 2 – Longitudinal profile of the Nisa stream a tributary of the Tejo River. Note the equilibrium relict profile upstream the older transient knickpoint (hatched line) and the downstream rejuvenated profile (continuous line). Legend: tKP – transient knickpoint; rKp – resistant knickpoint; Mt – schist and phyllite; Gr – granite; Hf – hornfels; Og – orthogneisse. In the inset Distance – Slope plots, fill circles correspond to the relict graded profile, crosses correspond to the rejuvenated profile located downstream the older transient knickpoint (tKP).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

NEW DATA ON THE CHRONOLOGY OF THE VALE DO FORNO SEDIMENTARY SEQUENCE (LOWER TAGUS RIVER TERRACE STAIRCASE) AND ITS RELEVANCE AS FLUVIAL ARCHIVE OF THE MIDDLE PLEISTOCENE IN WESTERN IBERIA Pedro P. Cunha 1, António A. Martins 2, Jan-Pieter Buylaert 3,4, Andrew S. Murray 4, Luis Raposo 5, Paolo Mozzi 6, Martin Stokes 7 1 MARE - Marine and Environmental Sciences Centre, Department of Earth Sciences, University of Coimbra, Portugal: pcunha@dct.uc.pt 2 MARE - Marine and Environmental Sciences Centre, Dep. Geociências, University of Évora, Portugal; aam@uevora.pt 3 Centre for Nuclear Technologies, Technical University of Denmark, Risø Campus, Denmark; jabu@dtu.dk 4 Nordic Laboratory for Luminescence Dating, Aarhus University, Risø DTU, Denmark; anmu@dtu.dk 5 Museu Nacional de Arqueologia, Lisboa, Portugal; 3raposos@sapo.pt 6 Department of Geosciences, University of Padova, Italy; paolo.mozzi@unipd.it 7 School of Geography, Earth and Environmental Sciences, University of Plymouth, UK; m.stokes@plymouth.ac.uk The stratigraphic units that record the evolution of the Tagus River in Portugal (study area between Vila Velha de Ródão and Porto Alto villages; Fig. 1) have different sedimentary characteristics and lithic industries (Cunha et al., 2012): - a culminant sedimentary unit (the ancestral Tagus, before the drainage network entrenchment) – SLD13 (+142 to 262 m above river bed – a.r.b.; with probable age ca. 3,6 to 1,8 Ma), without artefacts; - T1 terrace (+84 to 180 m; ca. 1000? to 900 ka), without artefacts; - T2 terrace (+57 to 150 m; top deposits with a probable age ca. 600 ka), without artefacts; - T3 terrace (+43 to 113 m; ca. 460 to 360? ka), without artefacts; - T4 terrace (+26 to 55 m; ca. 335 a 155 ka), Lower Paleolithic (Acheulian) at basal and middle levels but early Middle Paleolithic at top levels; - T5 terrace (+5 to 34 m; 135 to 73 ka), Middle Paleolithic (Mousterian; Levallois technique); - T6 terrace (+3 to 14 m; 62 to 32 ka), late Middle Paleolithic (late Mousterian); - Carregueira Sands (aeolian sands) and colluvium (+3 a ca. 100 m; 32 to 12 ka), Upper Paleolithic to Epipaleolithic; - alluvial plain (+0 to 8 m; ca. 12 ka to present), Mesolithic and more recent industries. The differences in elevation (a.r.b.) of the several terrace staircases results from differential uplift due to active faults. Longitudinal correlation with the terrace levels indicates that a graded profile ca. 200 km long was achieved during terrace formation periods and a strong control by sea base level was determinant for terrace formation. The Neogene sedimentary units constituted the main source of sediments for the fluvial terraces (Fig. 2). Geomorphological mapping, coupled with lithostratigraphy, sedimentology and luminescence dating (quartz-OSL and K-feldspar post-IRIR290) were used in this study focused on the T4 terrace, which comprises a Lower Gravels (LG) unit and an Upper Sand (US) unit. The thick, coarse and dominantly massive gravels of the LG unit indicate deposition by a coarse bed-load braided river, with strong sediment supply, high gradient and fluvial competence, during conditions of rapidly rising sea level. Luminescence dating only provided minimum ages but it is probable that the LG unit corresponds to the earlier part of the MIS9 (ca. 335 to 325 ka), immediately postdating the incision promoted by the very low sea level (reaching ca. -140 m) during MIS10 (362 to 337 ka), a period of relatively cold climate conditions with weak vegetation cover on slopes and low sea level. Fig. 1. Main Portuguese reaches in which the Tagus River can be divided (Lower Tagus Basin): I – from the Spanish border to Arneiro (a general E–W trend, mainly consisting of polygonal segments); II – from Arneiro to Gavião (NE–SW); III – from Gavião to Arripiado (E–W); IV – from Arripiado to Vila Franca de Xira (NNE-SSW); V – from Vila Franca de Xira to the Atlantic shoreline. The faults considered to be the limit of the referred fluvial sectors are: F1 – Ponsul-Arneiro fault (WSW-ENE); F2 – Gavião fault (NW-SE); F3 – Ortiga fault (NW-SE); F4 – Vila Nova da Barquinha fault (W-E); F5 – Arripiado-Chamusca fault (NNE-SSW). 1 – estuary; 2 – terraces; 3 – faults; 4 – Tagus main channel. The main Iberian drainage basins are also represented (inset). The lower and middle parts of the US unit, comprising an alternation of clayish silts with paleosols and minor sands to the east (flood-plain deposits) and sand deposits to the west (channel belt), have a probable age of ca. 325 to 200 ka. This points to formation during MIS9 to MIS7, under conditions of high to medium sea levels and warm to mild conditions. The upper part of the US unit, dominated by sand facies and with OSL ages of ca. 200 to 154 ka, correlates with the early part of the MIS6. During this period, progradation resulted from climate deterioration and relative depletion of vegetation that promoted enhanced sediment production in the catchment, coupled with initiation of sea-level lowering that increased the longitudinal slope. The Vale do Forno and Vale da Atela archaeological sites (Alpiarça, central Portugal) document the earliest human occupation in the Lower Tagus River, well established in geomorphological and environmental terms, within the Middle Pleistocene. The Lower Palaeolithic sites were found on the T4 terrace (+26 m, a.r.b.). The oldest artefacts previously found in the LG unit, display crude bifacial forms that can be attributed to the Acheulian, with a probable age of ca. 335 to 325 ka. The T4 US unit has archaeological sites stratigraphically documenting successive phases of an evolved Acheulian, that probably date ca. 325 to 300 ka. Notably, these Lower Palaeolithic artisans were able to produce tools with different sophistication levels, simply by applying different strategies: more elaborated reduction sequences in case of bifaces and simple reduction sequences to obtain cleavers. Fig. 2. . Simplified geologic map of the Lower Tagus Cenozoic basin, adapted from the Carta Geológica de Portugal, 1/500000, 1992). The study area (comprising the Vale do Forno and Vale de Atela sites) is located on the more upstream sector of the Lower Tagus River reach IV, between Arripiado and Chamusca villages. 1 – alluvium (Holocene); 2 – terraces (Pleistocene); 3 – sands, silts and gravels (Paleogene to Pliocene); 4 – Sintra Massif (Cretaceous); 5 – limestones, marls, silts and sandstones (Mesozoic); 6 – quartzites (Ordovician); 7 – basement (Proterozoic to Palaeozoic); 8 – main fault. The main Portuguese reaches of the Tagus River are identified (I to V). The VF3 site (Milharós), containing a Final Acheulian industry, with fine and elaborated bifaces) found in a stratigraphic level located between the T4 terrace deposits and a colluvium associated with Late Pleistocene aeolian sands (32 to 12 ka), has an age younger than ca. 154 ka but much older than 32 ka. In the study area, the sedimentary units of the T4 terrace seem to record the river response to sea-level changes and climatically-driven fluctuations in sediment supply. REFERENCES Cunha P. P., Almeida N. A. C., Aubry T., Martins A. A., Murray A. S., Buylaert J.-P., Sohbati R., Raposo L., Rocha L., 2012, Records of human occupation from Pleistocene river terrace and aeolian sediments in the Arneiro depression (Lower Tejo River, central eastern Portugal). Geomorphology, vol. 165-166, pp. 78-90.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study examines the long profiles of tributaries of the Tagus and Zêzere rivers in Portugal (West Iberia) in order to provide new insights into patterns, timing, and controls on drainage development during the Quaternary incision stage. The studied streams are incised into a relict culminant fluvial surface, abandoned at the beginning of the incision stage. The streams flow through a landscape with bedrock variations in lithology (mainly granites and metasediments) and faulted blocks with distinct uplift rates. The long profiles of the analyzed streams record an older transitory knickpoint/knickzone separating (1) an upstream relict graded profile, with lower steepness and higher concavity, that reflects a long period of quasi-equilibrium conditions reached after the beginning of the incision stage, and (2) a downstream rejuvenated long profile, with steeper gradient and lower concavity, particularly for the final reach, which is often convex. The rejuvenated reaches testify to the upstream propagation of several incision waves, interpreted as the response of each stream to increasing crustal uplift and prolonged periods of base-level lowering by the trunk drainages, coeval with low sea level conditions. The morphological configurations of the long profiles enabled spatial and relative temporal patterns of incisions to be quantified. The incision values of streams flowing on the Portuguese Central Range (PCR; ca. 380–150 m) are variable but generally higher than the incision values of streams flowing on the adjacent South Portugal Planation Surface (SPPS; ca. 220–110 m), corroborating differential uplift of the PCR relative to the SPPS. Owing to the fact that the relict graded profiles can be correlated with the Tagus River T1 terrace (1.1–0.9 My) present in the study area, incision rates can be estimated (1) for the streams located in the PCR, 0.38–0.15 m/ky and (2) for the streams flowing on the SPPS, 0.22–0.12 m/ky. The differential uplift inferred in the study area supports the neotectonic activity of the bordering faults, as proposed in previous studies based upon other geological evidence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study presents the preliminary results of MINEPLAT survey, organized by Universidade de Évora in partnership with Instituto Português do Mar e da Atmosfera (IPMA) based on an integrated analysis of geophysical data namely, ultra-high resolution seismic data (UHRS), multibeam data, backscatter data and magnetic data. The survey took place on north Alentejo continental shelf (30 to 200 meters depth) between Tróia and Sines. The interpretation and integration of the acquired data allows substantial improvement on the knowledge on the morphology and geology of the surface and subsurface of the Alentejo continental shelf towards the assessment of the mineral resources potential in the continental shelf off Alentejo and of the environmental conditions caused by the tectonic uplift in the Pliocene-Quaternary.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study examines the long profiles of tributaries of the Tagus and Zêzere rivers in Portugal (West Iberia) in order to provide new insights into patterns, timing, and controls on drainage development during the Quaternary incision stage. The studied streams are incised into a relict culminant fluvial surface, abandoned at the beginning of the incision stage. The streams flow through a landscape with bedrock variations in lithology (mainly granites and metasediments) and faulted blocks with distinct uplift rates. The long profiles of the analyzed streams record an older transitory knickpoint/knickzone separating (1) an upstream relict graded profile, with lower steepness and higher concavity, that reflects a long period of quasi-equilibrium conditions reached after the beginning of the incision stage, and (2) a downstream rejuvenated long profile, with steeper gradient and lower concavity, particularly for the final reach, which is often convex. The rejuvenated reaches testify to the upstream propagation of several incision waves, interpreted as the response of each stream to increasing crustal uplift and prolonged periods of base-level lowering by the trunk drainages, coeval with low sea level conditions. The morphological configurations of the long profiles enabled spatial and relative temporal patterns of incisions to be quantified. The incision values of streams flowing on the Portuguese Central Range (PCR; ca. 380–150 m) are variable but generally higher than the incision values of streams flowing on the adjacent South Portugal Planation Surface (SPPS; ca. 220–110 m), corroborating differential uplift of the PCR relative to the SPPS. Owing to the fact that the relict graded profiles can be correlated with the Tagus River T1 terrace (1.1–0.9 My) present in the study area, incision rates can be estimated (1) for the streams located in the PCR, 0.38–0.15 m/ky and (2) for the streams flowing on the SPPS, 0.22–0.12 m/ky. The differential uplift inferred in the study area supports the neotectonic activity of the bordering faults, as proposed in previous studies based upon other geological evidence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Detrital zircons from Holocene beach sand and igneous zircons from the Cretaceous syenite forming Cape Sines (Western Iberian margin) were dated using laser ablation – inductively coupled plasma – mass spectrometry. The U–Pb ages obtained were used for comparison with previous radiometric data from Carboniferous greywacke, Pliocene–Pleistocene sand and Cretaceous syenite forming the sea cliff at Cape Sines and the contiguous coast. New U–Pb dating of igneous morphologically simple and complex zircons from the syenite of the Sines pluton suggests that the history of zircon crystallization was more extensive (ca 87 to 74 Ma), in contrast to the findings of previous geochronology studies (ca 76 to 74 Ma). The U–Pb ages obtained in Holocene sand revealed a wide interval, ranging from the Cretaceous to the Archean, with predominance of Cretaceous (37%), Palaeozoic (35%) and Neoproterozoic (19%) detrital-zircon ages. The paucity of round to subrounded grains seems to indicate a short transportation history for most of the Cretaceous zircons (ca 95 to 73 Ma) which are more abundant in the beach sand that was sampled south of Cape Sines. Comparative analysis using the Kolmogorov–Smirnov statistical method, analysing sub-populations separately, suggests that the zircon populations of the Carboniferous and Cretaceous rocks forming the sea cliff were reproduced faithfully in Quaternary sand, indicating sediment recycling. The similarity of the pre- Cretaceous ages (>ca 280 Ma) of detrital zircons found in Holocene sand, as compared with Carboniferous greywacke and Pliocene–Pleistocene sand, provides support for the hypothesis that detritus was reworked into the beach from older sedimentary rocks exposed along the sea cliff. The largest percentage of Cretaceous zircons (uplift. This work highlights the application of the Kolmogorov–Smirnov method in compar- ison of zircon age populations used to identify provenance and sediment recycling in modern and ancient detrital sedimentary sequences.