2 resultados para tree-based
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
We used 2012 sap flow measurements to assess the seasonal dynamics of daily plant transpiration (ETc) in a high-density olive orchard (Olea europaea L. cv. ‘Arbequina’) with a well-watered (HI) control treatment A to supply 100 % of the crop water needs, and a moderately (MI) watered treatment B that replaced 70% of crop needs. To assure that treatment A was well-watered, we compared field daily ETc values against ETc obtained with the Penman-Monteith (PM) combination equation incorporating the Orgaz et al. (2007) bulk daily canopy conductance (gc) model, validated for our non-limiting conditions. We then tested the hypothesis of indirectly monitoring olive ETc from readily available vegetation index (VI) and ground-based plant water stress indicator. In the process we used the FAO56 dual crop coefficient (Kc) approach. For the HI olive trees we defined Kcb as the basal transpiration coefficient, and we related Kcb to remotely sensed Soil Adjusted Vegetation Index (SAVI) through a Kcb-SAVI functional relationship. For the MI treatment, we defined the actual transpiration ETc as the product of Kcb and the stress reduction coefficient Ks obtained as the ratio of actual to crop ETc, and we correlated Ks with MI midday stem water potential (ψst) values through a Ks-ψ functional relationship. Operational monitoring of ETc was then implemented with the ETc = Kcb(SAVI)Ks(ψ)ETo relationship stemmed from the FAO56 approach and validated taking as inputs collected SAVI and ψst data reporting to year 2011. Low validation error (6%) and high goodness-of-fit of prediction were observed (R2 = 0.94, RSME = 0.2 mm day-1, P = 0.0015), allowing to consider that under field conditions it is possible to predict ETc values for our hedgerow olive orchards if SAVI and water potential (ψst) values are known.
Resumo:
Modifications in vegetation cover can have an impact on the climate through changes in biogeochemical and biogeophysical processes. In this paper, the tree canopy cover percentage of a savannah-like ecosystem (montado/dehesa) was estimated at Landsat pixel level for 2011, and the role of different canopy cover percentages on land surface albedo (LSA) and land surface temperature (LST) were analysed. A modelling procedure using a SGB machine-learning algorithm and Landsat 5-TM spectral bands and derived vegetation indices as explanatory variables, showed that the estimation of montado canopy cover was obtained with good agreement (R2 = 78.4%). Overall, montado canopy cover estimations showed that low canopy cover class (MT_1) is the most representative with 50.63% of total montado area. MODIS LSA and LST products were used to investigate the magnitude of differences in mean annual LSA and LST values between contrasting montado canopy cover percentages. As a result, it was found a significant statistical relationship between montado canopy cover percentage and mean annual surface albedo (R2 = 0.866, p < 0.001) and surface temperature (R2 = 0.942, p < 0.001). The comparisons between the four contrasting montado canopy cover classes showed marked differences in LSA (χ2 = 192.17, df = 3, p < 0.001) and LST (χ2 = 318.18, df = 3, p < 0.001). The highest montado canopy cover percentage (MT_4) generally had lower albedo than lowest canopy cover class, presenting a difference of −11.2% in mean annual albedo values. It was also showed that MT_4 and MT_3 are the cooler canopy cover classes, and MT_2 and MT_1 the warmer, where MT_1 class had a difference of 3.42 °C compared with MT_4 class. Overall, this research highlighted the role that potential changes in montado canopy cover may play in local land surface albedo and temperature variations, as an increase in these two biogeophysical parameters may potentially bring about, in the long term, local/regional climatic changes moving towards greater aridity.