2 resultados para tillage systems

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study aims to evaluate the contribution of no-till (SD) and cover crops (CC) in mitigating the risk of salinity / sodicity of the soil. We tested whether the increase of soil infiltration rate and the reduction of the direct evaporation, achieved with a high amount of residues on the soil surface from the CC followed by SD, would enable a smaller accumulation of salts during the summer and more leaching of salt during winter. The experiment The experiment included two tillage systems: no-till associated to a winter cover crop (SD / CC) and the conventional system (SC) (chisel and disc harrows), divided into two water regimes and two levels of water salinity (0.7 dS m-1 and 2.0 dS m-1), both with adsorption sodium ratio 3. Contrary to expectations CC showed a tendency to increase salt content in Fall-Winter period, due to the reduction of the fraction available to leaching, but showed advantages in reducing long term salt content due to the improved structure of the B horizon, because decreases the tendency to the reduction of the structure of this horizon, caused typically by the permanent high moisture content during.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As the world population and food production demands rise, keeping agricultural soils and landscapes healthy and productive are of paramount importance to sustaining local and global food security and the flow of ecosystem services to society. The global population, expected to reach 9.7 billion people by 2050, will put additional pressure on the available land area and resources for agricultural production. Sustainable production intensification for food security is a major challenge to both industrialized and developing countries. The paper focuses on the results from long-term multi-factorial experiments involving tillage practices, crop rotations and fertilization to study the interactions amongst the treatments in the context of sustainable production intensification. The paper discusses the results in relation to reported performance of crops and soil quality in Conservation Agriculture systems that are based on no or minimum soil disturbance (no-till seeding and weeding), maintenance of soil mulch cover with crop biomass and cover crops, and diversified cropping systems involving annuals and perennials. Conservation Agriculture also emphasizes the necessity of an agro-ecosystems approach to the management of agricultural land for sustainable production intensification, as well as to the site-specificity of agricultural production. Arguments in favor of avoiding the use of soil tillage are discussed together with agro-ecological principles for sustainable intensification of agriculture. More interdisciplinary systems research is required to support the transformation of agriculture from the conventional tillage agriculture to a more sustainable agriculture based on the principles and practices of Conservation Agriculture, along with other complementary practices of integrated crop, nutrient, water, pest, energy and farm power management.