1 resultado para tangent sphere bundle
em Repositório Científico da Universidade de Évora - Portugal
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (4)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (9)
- Aston University Research Archive (6)
- Biblioteca Digital da Câmara dos Deputados (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (9)
- Biblioteca Digital de la Universidad Católica Argentina (5)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (65)
- Blue Tiger Commons - Lincoln University - USA (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (17)
- Bulgarian Digital Mathematics Library at IMI-BAS (3)
- CaltechTHESIS (47)
- Cambridge University Engineering Department Publications Database (31)
- CentAUR: Central Archive University of Reading - UK (24)
- Center for Jewish History Digital Collections (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (52)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (2)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (6)
- Digital Peer Publishing (2)
- DigitalCommons@The Texas Medical Center (1)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (1)
- Duke University (12)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- eScholarship Repository - University of California (1)
- Harvard University (1)
- Helda - Digital Repository of University of Helsinki (48)
- Indian Institute of Science - Bangalore - Índia (234)
- National Center for Biotechnology Information - NCBI (13)
- Open University Netherlands (4)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (30)
- Queensland University of Technology - ePrints Archive (221)
- Repositório Científico da Escola Superior de Enfermagem de Coimbra (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (17)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- Universidad de Alicante (1)
- Universidad Politécnica de Madrid (3)
- Université de Lausanne, Switzerland (1)
- University of Michigan (31)
- University of Queensland eSpace - Australia (10)
- WestminsterResearch - UK (1)
Resumo:
We prove a Theorem on homotheties between two given tangent sphere bundles SrM of a Riemannian manifold (M,g) of dim ≥ 3, assuming different variable radius functions r and weighted Sasaki metrics induced by the conformal class of g. New examples are shown of manifolds with constant positive or with constant negative scalar curvature which are not Einstein. Recalling results on the associated almost complex structure I^G and symplectic structure ω^G on the manifold TM , generalizing the well-known structure of Sasaki by admitting weights and connections with torsion, we compute the Chern and the Stiefel-Whitney characteristic classes of the manifolds TM and SrM.