3 resultados para surface approach

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Modifications in vegetation cover can have an impact on the climate through changes in biogeochemical and biogeophysical processes. In this paper, the tree canopy cover percentage of a savannah-like ecosystem (montado/dehesa) was estimated at Landsat pixel level for 2011, and the role of different canopy cover percentages on land surface albedo (LSA) and land surface temperature (LST) were analysed. A modelling procedure using a SGB machine-learning algorithm and Landsat 5-TM spectral bands and derived vegetation indices as explanatory variables, showed that the estimation of montado canopy cover was obtained with good agreement (R2 = 78.4%). Overall, montado canopy cover estimations showed that low canopy cover class (MT_1) is the most representative with 50.63% of total montado area. MODIS LSA and LST products were used to investigate the magnitude of differences in mean annual LSA and LST values between contrasting montado canopy cover percentages. As a result, it was found a significant statistical relationship between montado canopy cover percentage and mean annual surface albedo (R2 = 0.866, p < 0.001) and surface temperature (R2 = 0.942, p < 0.001). The comparisons between the four contrasting montado canopy cover classes showed marked differences in LSA (χ2 = 192.17, df = 3, p < 0.001) and LST (χ2 = 318.18, df = 3, p < 0.001). The highest montado canopy cover percentage (MT_4) generally had lower albedo than lowest canopy cover class, presenting a difference of −11.2% in mean annual albedo values. It was also showed that MT_4 and MT_3 are the cooler canopy cover classes, and MT_2 and MT_1 the warmer, where MT_1 class had a difference of 3.42 °C compared with MT_4 class. Overall, this research highlighted the role that potential changes in montado canopy cover may play in local land surface albedo and temperature variations, as an increase in these two biogeophysical parameters may potentially bring about, in the long term, local/regional climatic changes moving towards greater aridity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The preservation of modern and contemporary art and costume collections in museums requires a complete understanding of their constituent materials which are often synthetic or semi-synthetic polymers. An extraordinary amount of quality information can be gained from instrumental techniques, but some of them have the disadvantage of being destructive. This paper presents a new totally integrated non-invasive methodology, for the identification of polymers and their additives, on plastic artefacts in museums. NMR (nuclear magnetic resonance) and in-situ FTIR-ATR (attenuated total reflection infrared spectroscopy) combination allowed the full characterization of the structure of thesematerials and correct identification of each one. The NMR technique applied to leached surface exudates identified unequivocally a great number of additives, exceeding the Py–GC–MS analysis of micro-fragments in number and efficiency. Additionally, in-situ FTIR-ATR provided exactly the same information of the destructive μ-FTIR about the polymer structure and confirmed the presence of some additives. Eight costume pieces (cosmetic boxes and purses), dating to the beginning of the 20th century and belonging to the Portuguese National Museum of Costume and Fashion, were correctly identified with this new integrated methodology, as beingmade of plastics derived fromcellulose acetate or cellulose nitrate polymers, contradicting the initial information that these pieces were made of Bakelite. The identification of a surprisingly large number of different additives forms an added value of this methodology and opens a perspective of a quick and better characterization of plastic artefacts in museum environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper focusses on the study of the underdrawings of 16th century easel paintings attributed to the workshop of the Portuguese-Flemish Master Frei Carlos. This investigation encompasses multidisciplinary research that relates the results of surface exams (infrared reflectography, standard light photography and infrared photography) with analytical investigations. The surface analysis of Frei Carlos’ underdrawings by infrared reflectography has shown heterogeneous work, revealing two different situations: (1) an abundant and expressive underdrawing, revealing a Flemish influence and (2) a simple and outlined underdrawing. This preliminary research raised an important question related to this Portuguese-Flemish workshop and to the analytical approach: Is the underdrawing's heterogeneity, as observed in the reflectograms, related to different artists or is this rather an effect that is produced due to the use of different materials in the underdrawing's execution? Consequently, if different materials were used, how can we have access to the hidden underdrawings? In order to understand the reasons for this dissemblance, chemical analysis of micro-samples collected in underdrawing areas and representing both situations were carried out by optical microscopy, micro Fourier transform infrared spectroscopy (μ-FTIR), scanning electron microscopy coupled with energy dispersive X-ray spectrometry (SEM-EDX) and micro-Raman spectroscopy (μ-Raman). Taking into account the different possibilities and practical and theoretical limitations of surface and punctual examinations in the study of easel painting underdrawings, the methodology of research was adjusted, sometimes resulting in a re-analysis of experimental results. This research shows the importance of combining multispectral surface exams and chemical analysis in the understanding of the artistic creative processes of 16th century easel paintings.