3 resultados para subdivision

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the theme of fracture of finite-strain plates and shells based on a phase-field model of crack regularization, we introduce a new staggered algorithm for elastic and elasto-plastic materials. To account for correct fracture behavior in bending, two independent phase-fields are used, corresponding to the lower and upper faces of the shell. This is shown to provide a realistic behavior in bending-dominated problems, here illustrated in classical beam and plate problems. Finite strain behavior for both elastic and elasto-plastic constitutive laws is made compatible with the phase-field model by use of a consistent updated-Lagrangian algorithm. To guarantee sufficient resolution in the definition of the crack paths, a local remeshing algorithm based on the phase- field values at the lower and upper shell faces is introduced. In this local remeshing algorithm, two stages are used: edge-based element subdivision and node repositioning. Five representative numerical examples are shown, consisting of a bi-clamped beam, two versions of a square plate, the Keesecker pressurized cylinder problem, the Hexcan problem and the Muscat-Fenech and Atkins plate. All problems were successfully solved and the proposed solution was found to be robust and efficient.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose an alternative crack propagation algo- rithm which effectively circumvents the variable transfer procedure adopted with classical mesh adaptation algo- rithms. The present alternative consists of two stages: a mesh-creation stage where a local damage model is employed with the objective of defining a crack-conforming mesh and a subsequent analysis stage with a localization limiter in the form of a modified screened Poisson equation which is exempt of crack path calculations. In the second stage, the crack naturally occurs within the refined region. A staggered scheme for standard equilibrium and screened Poisson equa- tions is used in this second stage. Element subdivision is based on edge split operations using a constitutive quantity (damage). To assess the robustness and accuracy of this algo- rithm, we use five quasi-brittle benchmarks, all successfully solved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a crack propagation algorithm which is independent of particular constitutive laws and specific element technology. It consists of a localization limiter in the form of the screened Poisson equation with local mesh refinement. This combination allows the cap- turing of strain localization with good resolution, even in the absence of a sufficiently fine initial mesh. In addition, crack paths are implicitly defined from the localized region, cir- cumventing the need for a specific direction criterion. Observed phenomena such as mul- tiple crack growth and shielding emerge naturally from the algorithm. In contrast with alternative regularization algorithms, curved cracks are correctly represented. A staggered scheme for standard equilibrium and screened equations is used. Element subdivision is based on edge split operations using a given constitutive quantity (either damage or void fraction). To assess the robustness and accuracy of this algorithm, we use both quasi-brittle benchmarks and ductile tests.