1 resultado para stacking faults
em Repositório Científico da Universidade de Évora - Portugal
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (3)
- Adam Mickiewicz University Repository (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (3)
- Aquatic Commons (4)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (6)
- Aston University Research Archive (7)
- Biblioteca Digital da Câmara dos Deputados (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (4)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (19)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (16)
- Boston University Digital Common (2)
- Brock University, Canada (47)
- Bucknell University Digital Commons - Pensilvania - USA (4)
- CaltechTHESIS (30)
- Cambridge University Engineering Department Publications Database (31)
- CentAUR: Central Archive University of Reading - UK (12)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (230)
- CORA - Cork Open Research Archive - University College Cork - Ireland (6)
- Department of Computer Science E-Repository - King's College London, Strand, London (3)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (2)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Duke University (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (4)
- Greenwich Academic Literature Archive - UK (2)
- Helda - Digital Repository of University of Helsinki (5)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (217)
- Instituto Politécnico do Porto, Portugal (11)
- Massachusetts Institute of Technology (2)
- National Center for Biotechnology Information - NCBI (2)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (4)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (79)
- Queensland University of Technology - ePrints Archive (139)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (6)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (14)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- SAPIENTIA - Universidade do Algarve - Portugal (6)
- Universidad Politécnica de Madrid (7)
- Universidad Politécnica Salesiana Ecuador (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (1)
- University of Michigan (6)
- University of Queensland eSpace - Australia (6)
- University of Washington (2)
Resumo:
This paper presents our approach of identifying the profile of an unknown user based on the activities of known users. The aim of author profiling task of PAN@CLEF 2016 is cross-genre identification of the gender and age of an unknown user. This means training the system using the behavior of different users from one social media platform and identifying the profile of other user on some different platform. Instead of using single classifier to build the system we used a combination of different classifiers, also known as stacking. This approach allowed us explore the strength of all the classifiers and minimize the bias or error enforced by a single classifier.