2 resultados para smeared crack model

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose an alternative crack propagation algo- rithm which effectively circumvents the variable transfer procedure adopted with classical mesh adaptation algo- rithms. The present alternative consists of two stages: a mesh-creation stage where a local damage model is employed with the objective of defining a crack-conforming mesh and a subsequent analysis stage with a localization limiter in the form of a modified screened Poisson equation which is exempt of crack path calculations. In the second stage, the crack naturally occurs within the refined region. A staggered scheme for standard equilibrium and screened Poisson equa- tions is used in this second stage. Element subdivision is based on edge split operations using a constitutive quantity (damage). To assess the robustness and accuracy of this algo- rithm, we use five quasi-brittle benchmarks, all successfully solved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We predict macroscopic fracture related material parameters of fully exfoliated clay/epoxy nano- composites based on their fine scale features. Fracture is modeled by a phase field approach which is implemented as user subroutines UEL and UMAT in the commercial finite element software Abaqus. The phase field model replaces the sharp discontinuities with a scalar damage field representing the diffuse crack topology through controlling the amount of diffusion by a regularization parameter. Two different constitutive models for the matrix and the clay platelets are used; the nonlinear coupled system con- sisting of the equilibrium equation and a diffusion-type equation governing the phase field evolution are solved via a NewtoneRaphson approach. In order to predict the tensile strength and fracture toughness of the clay/epoxy composites we evaluated the J integral for different specimens with varying cracks. The effect of different geometry and material parameters, such as the clay weight ratio (wt.%) and the aspect ratio of clay platelets are studied.