5 resultados para smart meters
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
This paper focuses on computational models development and its applications on demand response, within smart grid scope. A prosumer model is presented and the corresponding economic dispatch problem solution is analyzed. The prosumer solar radiation production and energy consumption are forecasted by artificial neural networks. The existing demand response models are studied and a computational tool based on fuzzy clustering algorithm is developed and the results discussed. Consumer energy management applications within the InovGrid pilot project are presented. Computation systems are developed for the acquisition, monitoring, control and supervision of consumption data provided by smart meters, allowing the incorporation of consumer actions on their electrical energy management. An energy management system with integration of smart meters for energy consumers in a smart grid is developed.
Resumo:
Esta tese incide sobre o desenvolvimento de modelos computacionais e de aplicações para a gestão do lado da procura, no âmbito das redes elétricas inteligentes. É estudado o desempenho dos intervenientes da rede elétrica inteligente, sendo apresentado um modelo do produtor-consumidor doméstico. O problema de despacho económico considerando previsão de produção e consumo de energia obtidos a partir de redes neuronais artificiais é apresentado. São estudados os modelos existentes no âmbito dos programas de resposta à procura e é desenvolvida uma ferramenta computacional baseada no algoritmo de fuzzy-clustering subtrativo. São analisados perfis de consumo e modos de operação, incluindo uma breve análise da introdução do veículo elétrico e de contingências na rede de energia elétrica. São apresentadas aplicações para a gestão de energia dos consumidores no âmbito do projeto piloto InovGrid. São desenvolvidos sistemas de automação para, aquisição monitorização, controlo e supervisão do consumo a partir de dados fornecidos pelos contadores inteligente que permitem a incorporação das ações dos consumidores na gestão do consumo de energia elétrica; SMART GRIDS - COMPUTATIONAL MODELS DEVELOPMENT AND DEMAND SIDE MANAGMENT APPLICATIONS Abstract: This thesis focuses on the development of computational models and its applications on the demand side management within the smart grid scope. The performance of the electrical network players is studied and a domestic prosumer model is presented. The economic dispatch problem considering the production forecast and the energy consumption obtained from artificial neural networks is also presented. The existing demand response models are studied and a computational tool based on the fuzzy subtractive clustering algorithm is developed. Energy consumption profiles and operational modes are analyzed, including a brief analysis of the electrical vehicle and contingencies on the electrical network. Consumer energy management applications within the scope of InovGrid pilot project are presented. Computational systems are developed for the acquisition, monitoring, control and supervision of consumption data provided by smart meters allowing to incorporate consumer actions on their electrical energy management.
Resumo:
This paper presents a methodology to forecast the hourly and daily consumption in households assisted by cyber physical systems. The methodology was validated using a database of consumption of a set of 93 domestic consumers. Forecast tools used were based on Fast Fourier Series and Generalized Reduced Gradient. Both tools were tested and their forecast results were compared. The paper shows that both tools allow obtaining satisfactory results for energy consumption forecasting.
Resumo:
This paper proposes a process for the classifi cation of new residential electricity customers. The current state of the art is extended by using a combination of smart metering and survey data and by using model-based feature selection for the classifi cation task. Firstly, the normalized representative consumption profi les of the population are derived through the clustering of data from households. Secondly, new customers are classifi ed using survey data and a limited amount of smart metering data. Thirdly, regression analysis and model-based feature selection results explain the importance of the variables and which are the drivers of diff erent consumption profi les, enabling the extraction of appropriate models. The results of a case study show that the use of survey data signi ficantly increases accuracy of the classifi cation task (up to 20%). Considering four consumption groups, more than half of the customers are correctly classifi ed with only one week of metering data, with more weeks the accuracy is signifi cantly improved. The use of model-based feature selection resulted in the use of a signifi cantly lower number of features allowing an easy interpretation of the derived models.
Resumo:
Email is a key communication format in a digital world, both for professional and/or personal usage. Exchanged messages (both human and automatically generated) have reached such a volume that processing them can be a great challenge for human users that try to do it on a daily basis and in an efficient manner. In fact, a significant amount of their time is spent searching and getting context information (normally historic information) in order to prepare a reply message or to take a decision/action, when compared to the actual time required for writing a reply. Therefore, it is of utmost importance for this process to use both automatic and semi-automatic mechanisms that allow to put email messages into context. Since context information is given, not only by historical email messages but also inferred from the relationship between contacts and/or organizations present in the messages, the existence of navigation mechanisms (and even exploration ones) between contacts and entities associated to email messages, is of fundamental importance. This is the main purpose of the SMART Mail prototype, which architecture, data visualization and exploration components and AI algorithms, are presented throughout this paper.