2 resultados para selver-staining
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
For reasons of unequal distribution of more than one nematode species in wood, and limited availability of wood samples required for the PCR-based method for detecting pinewood nematodes in wood tissue of Pinus massoniana, a rapid staining-assisted wood sampling method aiding PCR-based detection of the pine wood nematode Bursaphelenchus xylophilus (Bx) in small wood samples of P. massoniana was developed in this study. This comprised a series of new techniques: sampling, mass estimations of nematodes using staining techniques, and lowest limit Bx nematode mass determination for PCR detection. The procedure was undertaken on three adjoining 5-mg wood cross-sections, of 0.5 · 0.5 · 0.015 cm dimension, that were cut from a wood sample of 0.5 · 0.5 · 0.5 cm initially, then the larger wood sample was stained by acid fuchsin, from which two 5-mg wood cross-sections (that adjoined the three 5-mg wood cross-sections, mentioned above) were cut. Nematode-staining-spots (NSSs) in each of the two stained sections were counted under a microscope at 100· magnification. If there were eight or more NSSs present, the adjoining three sections were used for PCR assays. The B. xylophilus – specific amplicon of 403 bp (DQ855275) was generated by PCR assay from 100.00% of 5-mg wood cross-sections that contained more than eight Bx NSSs by the PCR assay. The entire sampling procedure took only 10 min indicating that it is suitable for the fast estimation of nematode numbers in the wood of P. massonina as the prelimary sample selections for other more expensive Bx-detection methods such as PCR assay.
Resumo:
Chromosome structure and behaviour in both meiosis of the germ cells and mitosis of the embryo from fertilisation to the two-cell stage in Bursaphelenchus xylophilus were examined by DAPI staining and three-dimensional reconstruction of serial-section images from confocal laser-scanning microscopy. By this method, each chromosome’s shape and behaviour were clearly visible in early embryogenesis from fertilisation through the formation and fusion of the male and female pronuclei to the first mitotic division. The male pronucleus was bigger than that of the female, although the oocyte is larger and richer in nutrients than the sperm. From the shape of the separating chromosomes at anaphase, the mitotic chromosomes appeared to be polycentric or holocentric rather than monocentric. Each chromosome was clearly distinguishable in the male and female germ cells, pronuclei of the one-cell stage embryo, and the early embryonic nuclei. The haploid number of chromosomes (N) was six (2n = 12), and all chromosomes appeared similar. The chromosome pair containing the ribosomal RNA-coding site was visualised by fluorescence in situ hybridisation. Unlike the sex determination system in Caenorhabditis elegans (XX in hermaphrodite and XO in male), the system for B. xylophilus may consist of an XX female and an XY male.