2 resultados para rocky outcrops
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
This study aims to identify the flora and vegetation of rocky outcrops of low altitude and confined in the municipalities of Sobral, Groaíras and Santa Quitéria (Ceará state, Brazil), to propose a phytosociological classification for the xerophilous communities. We selected five stations in areas with high proportion of bare rock (> 80%), and the field work were conducted in March 2014 and 2015 respectively (3º 56’ S and 40º 23’ W, 4º 01’ S and 40º 05’ W, 4º 07’’ S and 40º 08’ W, 4º 09’ S and 40º 09’ W and 4º 03’ S and 40º 00’ W). Floristic relevés were made following the Braun-Blanquet classic sigmatist method. The minimum areas of the floristic relevés vary between 8 e 16 m². All the plant species growing in cracks, crevices and vegetation "spots" that can be found in these habitats were identified. The classification of the relevés was made through the Twinspan. The floristic list is composed of 89 species, distributed in 61 genera and 29 families. Fabaceae was the most representative in species richness, 20 species, followed by Poaceae (10 spp.), Euphorbiaceae (7 spp.) and Convolvulaceae (6 spp.). 22 Brazilian endemisms have been identified. Based in the phytosociological analysis and in the classification results we identified five groups and two communities can be clearly distinguished: community of Pilosocereus gounellei FA.C.Weber) Byles & Rowley and Encholirium spectabile Mart. ex Schult. & Schult.f. and the community of Crateva tapia L. and Combretum leprosum Mart..
Resumo:
Understanding and predicting patterns of distribution and abundance of marine resources is important for con- servation and management purposes in small-scale artisanal fisheries and industrial fisheries worldwide. The goose barnacle (Pollicipes pollicipes) is an important shellfish resource and its distribution is closely related to wave exposure at different spatial scales. We modelled the abundance (percent coverage) of P. pollicipes as a function of a simple wave exposure index based on fetch estimates from digitized coastlines at different spatial scales. The model accounted for 47.5% of the explained deviance and indicated that barnacle abundance increases non-linearly with wave exposure at both the smallest (metres) and largest (kilometres) spatial scales considered in this study. Distribution maps were predicted for the study region in SW Portugal. Our study suggests that the relationship between fetch-based exposure indices and P. pollicipes percent cover may be used as a simple tool for providing stakeholders with information on barnacle distribution patterns. This information may improve assessment of harvesting grounds and the dimension of exploitable areas, aiding management plans and support- ing decision making on conservation, harvesting pressure and surveillance strategies for this highly appreciated and socio- economically important marine resource.