7 resultados para quality indicators

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Soil is a key resource that provides the basis of food production and sustains and delivers several ecosystems services including regulating and supporting services such as water and climate regulation, soil formation and the cycling of nutrients carbon and water. During the last decades, population growth, dietary changes and the subsequent pressure on food production, have caused severe damages on soil quality as a consequence of intensive, high input-based agriculture. While agriculture is supposed to maintain and steward its most important resource base, it compromises soil quality and fertility through its impact on erosion, soil organic matter and biodiversity decline, compaction, etc., and thus the necessary yield increases for the next decades. New or improved cropping systems and agricultural practices are needed to ensure a sustainable use of this resource and to fully take the advantages of its associated ecosystem services. Also, new and better soil quality indicators are crucial for fast and in-field soil diagnosis to help farmers decide on the best management practices to adopt under specific pedo-climatic conditions. Conservation Agriculture and its fundamental principles: minimum (or no) soil disturbance, permanent organic soil cover and crop rotation /intercropping certainly figure among the possibilities capable to guarantee sustainable soil management. The iSQAPER project – Interactive Soil Quality Assessment in Europe and China for Agricultural Productivity and Environmental Resilience – is tackling this problem with the development of a Soil Quality application (SQAPP) that links soil and agricultural management practices to soil quality indicators and will provide an easy-to-use tool for farmers and land managers to judge their soil status. The University of Évora is the leader of WP6 - Evaluating and demonstrating measures to improve Soil Quality. In this work package, several promising soil and agricultural management practices will be tested at selected sites and evaluated using the set of soil quality indicators defined for the SQAPP tool. The project as a whole and WP6 in specific can contribute to proof and demonstrate under different pedoclimatic conditions the impact of Conservation Agriculture practices on soil quality and function as was named the call under which this project was submitted.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O presente relatório refere-se ao estágio curricular realizado na Estação Piloto de Piscicultura de Olhão, no período compreendido entre janeiro e julho de 2016, no âmbito do Mestrado Integrado em Medicina Veterinária da Universidade de Évora. Este trabalho divide-se em duas partes. A primeira parte descreve as atividades e respetiva casuística desenvolvidas nas diferentes áreas de produção aquícola. Na segunda parte é abordado o tema “Produção Aquícola de Peixes e Ostras em regime Semi-intensivo”, onde são enquadrados os conceitos relacionados com aquacultura, sistemas de produção e pesquisa de biomarcadores na qualidade e bem-estar animal. São ainda descritas as ações de acompanhamento, durante o estágio, de um projeto de investigação em sistemas de produção em tanques de terra exteriores e um caso clínico. Este relatório atesta a importância da Medicina Preventiva em aquacultura; Abstract: Fish and bivalve aquaculture production systems: growth and quality indicators The following report was elaborated after the externship conducted at the Olhão Pilot Aquaculture Station, between January and July of 2016, in order to fulfill the requirements for a Masters degree in Veterinary Medicine at the University of Évora. This report is divided in two parts. The first part contains a description of the developed activities and the casuistic at the different aquaculture production areas. The second part will focus on the development of the theme “Fish and Oyster aquaculture production in a semi-intensive culture system”, with a theoretical framework about aquaculture concepts, production systems and identifying biomarkers in animal healthcare. At last, are presented and supported the monitoring actions taken in an investigation study case about inshore production systems and a clinic case followed during the externship. This report attests the importance of Preventive Medicine in aquaculture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Regarding canal management modernization, water savings and water delivery quality, the study presents two automatic canal control approaches of the PI (Proportional and Integral) type: the distant and the local downstream control modes. The two PI controllers are defined, tuned and tested using an hydraulic unsteady flow simulation model, particularly suitable for canal control studies. The PI control parameters are tuned using optimization tools. The simulations are done for a Portuguese prototype canal and the PI controllers are analyzed and compared considering a demand-oriented-canal operation. The paper presents and analyzes the two control modes answers for five different offtake types – gate controlled weir, gate controlled orifice, weir with or without adjustable height and automatic flow adjustable offtake. The simulation results are compared using water volumes performance indicators (considering the demanded, supplied and the effectives water volumes) and a time indicator, defined taking into account the time during which the demand discharges are effective discharges. Regarding water savings, the simulation results for the five offtake types prove that the local downstream control gives the best results (no water operational losses) and that the distant downstream control presents worse results in connection with the automatic flow adjustable offtakes. Considering the water volumes and time performance indicators, the best results are obtained for the automatic flow adjustable offtakes and the worse for the gate controlled orifices, followed by the weir with adjustable height.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vitis vinifera L. cv. Crimson Seedless is a late season red table grape developed in 1989, with a high market value and increasingly cultivated under protected environments to extend the availability of seedless table grapes into the late fall. The purpose of this work was to evaluate leaf water potential and sap flow as indicators of water stress in Crimson Seedless vines under standard and reduced irrigation strategy, consisting of 70 % of the standard irrigation depth. Additionally, two sub-treatments were applied, consisting of normal irrigation throughout the growing season and a short irrigation induced stress period between veraison and harvest. Leaf water potential measurements coherently signaled crop-available water variations caused by different irrigation treatments, suggesting that this plant-based method can be reliably used to identify water-stress conditions. The use of sap flow density data to establish a ratio based on a reference ‘well irrigated vine’ and less irrigated vines can potentially be used to signal differences in the transpiration rates, which may be suitable for improving irrigation management strategies while preventing undesirable levels of water stress. Although all four irrigation strategies resulted in the production of quality table grapes, significant differences (p ≤ 0.05) were found in both berry weight and sugar content between the standard irrigation and reduced irrigation treatments. Reduced irrigation increased slightly the average berry size as well as sugar content and technical maturity index. The 2-week irrigation stress period had a negative effect on these parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Vitis vinifera L. cv. Crimson Seedless is a late season red table grape developed in 1989, with a high market value and increasingly cultivated under protected environments to extend the availability of seedless table grapes into the late fall. The purpose of this work was to evaluate leaf water potential and sap flow as indicators of water stress in Crimson Seedless vines under standard and reduced irrigation strategy, consisting of 70 % of the standard irrigation depth. Additionally, two sub-treatments were applied, consisting of normal irrigation throughout the growing season and a short irrigation induced stress period between veraison and harvest. Leaf water potential measurements coherently signaled crop-available water variations caused by different irrigation treatments, suggesting that this plant-based method can be reliably used to identify water-stress conditions. The use of sap flow density data to establish a ratio based on a reference ‘well irrigated vine’ and less irrigated vines can potentially be used to signal differences in the transpiration rates, which may be suitable for improving irrigation management strategies while preventing undesirable levels of water stress. Although all four irrigation strategies resulted in the production of quality table grapes, significant differences (p ≤ 0.05) were found in both berry weight and sugar content between the standard irrigation and reduced irrigation treatments. Reduced irrigation increased slightly the average berry size as well as sugar content and technical maturity index. The 2-week irrigation stress period had a negative effect on these parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water deficit is the most limiting factor for yield and fruit-quality parameters in papaya crop (Carica papaya L.), deficit-irrigation (DI) strategies offering a feasible alternative to manage limiting water resources. When DI is applied, it is crucial to assess the physiological status of the crop in order to maintain the plant within a threshold value of water stress so as no to affect yield or fruit-quality parameters. The aim of this work was to evaluate the feasibility of thermal imaging in young papaya plants to assess the physiological status of this crop when it is subjected to different DI regimes, studying the relationships between the changes in leaf temperature (Tleaf) and in the major physiological parameters (i.e., stomatal conductance to water vapor, gs; transpiration, E; and net photosynthesis, An). The trial was conducted in a greenhouse from March to April of 2012. Plants were grown in pots and subjected to four irrigation treatments: (1) a full irrigation treatment (control), maintained at field capacity; (2) a partial root-zone drying treatment, irrigated with 50% of the total water applied to control to only one side of roots, alternating the sides every 7 days; (3) a regulated deficit irrigation (50% of the control, applied to both sides of plant); (4) and a non-irrigated treatment, in which irrigation was withheld from both sides of the split root for 14 days, followed by full irrigation until the end of the study. Significant relationships were found between Tleaf and major physiological variables such as gs, E and An. Additionally, significant relationships were found between the difference of leaf-to-air temperature (ΔTleaf–air) and gas-exchange measurements, which were used to establish the optimum range of ΔTleaf–air as a preliminary step to the crop-water monitoring and irrigation scheduling in papaya, using thermal imaging as the main source of information. According to the results, we conclude that thermal imaging is a promising technique to monitor the physiological status of papaya during drought conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water deficit is the most limiting factor for yield and fruit-quality parameters in papaya crop (Carica papaya L.), deficit-irrigation (DI) strategies offering a feasible alternative to manage limiting water resources. When DI is applied, it is crucial to assess the physiological status of the crop in order to maintain the plant within a threshold value of water stress so as no to affect yield or fruit-quality parameters. The aim of this work was to evaluate the feasibility of thermal imaging in young papaya plants to assess the physiological status of this crop when it is subjected to different DI regimes, studying the relationships between the changes in leaf temperature (Tleaf) and in the major physiological parameters (i.e., stomatal conductance to water vapor, gs; transpiration, E; and net photosynthesis, An). The trial was conducted in a greenhouse from March to April of 2012. Plants were grown in pots and subjected to four irrigation treatments: (1) a full irrigation treatment (control), maintained at field capacity; (2) a partial root-zone drying treatment, irrigated with 50% of the total water applied to control to only one side of roots, alternating the sides every 7 days; (3) a regulated deficit irrigation (50% of the control, applied to both sides of plant); (4) and a non-irrigated treatment, in which irrigation was withheld from both sides of the split root for 14 days, followed by full irrigation until the end of the study. Significant relationships were found between Tleaf and major physiological variables such as gs, E and An. Additionally, significant relationships were found between the difference of leaf-to-air temperature (ΔTleaf–air) and gas-exchange measurements, which were used to establish the optimum range of ΔTleaf–air as a preliminary step to the crop-water monitoring and irrigation scheduling in papaya, using thermal imaging as the main source of information. According to the results, we conclude that thermal imaging is a promising technique to monitor the physiological status of papaya during drought conditions.