4 resultados para protected areas
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
Marine Protected Areas (MPAs) are increasingly being recommended as management tools for biodiversity conservation and fisheries. With the purpose of protecting the region's biodiversity and prevent the over exploitation of marine resources, in February 2011 the no-take MPAs of Ilha do Pessegueiro and Cabo Sard~ao were implemented within the “Parque Natural do Sudoeste Alentejano e Costa Vicentina “(PNSACV) Marine Park, south western coast of Portugal. As such, commercial and recreational fishing became prohibited in these areas. In order to evaluate the effects of these no-take MPAs, the structure of their fish assemblages and of adjacent control areas without fishing restrictions were studied between 2011 (immediately after implementation) and 2013 (two years after implementation). A total of 4 sampling campaigns were conducted (summer 2011, winter 2012, summer 2013 and winter 2013) using trammel nets and bottom trawl. Ichthyofaunal assemblages from the no-take MPAs (treatment) were compared with adjacent areas (controls) and changes evaluated as a function of time since protection. Results revealed significant increase in fish abundance after the implementation of the no-take MPAs. Furthermore, significant differences in the structure of fish assemblages (abundance and fish size) between protected and neighbouring areas were rapidly observed upon the implementation of the no-take MPAs. In addition, specimens of larger size occurred more frequently within Ilha do Pessegueiro no-take MPA in the last year of the study. Overall, despite the young age of these no-take MPAs, changes on the structure of their fish assemblages were already evident after only two years of protection, indicating that management measures such as MPA designation may play an important role to promote fisheries sustainable exploitation as well as to protect species with conservation interest.
Resumo:
Changes in fish assemblage structure caused by human activities, such as fishing, can alter trophic relations in fish assemblages. In this context, Marine Protected Areas (MPA) are efficient tools for habitat recovery and ideal environments for evaluating changes on the trophic structure resulting from human activities. The present work targeted fish assemblages from two no-take MPAs from the northern half of South Alentejo and Costa Vicentina Marine Park, established in 2011. Previous works reported positive effects on local fish assemblages after no-take MPA designation, and it is therefore important to further study its impact on local fish assemblages, especially concerning trophic interactions. Local fish assemblages were sampled (summer 2011, winter 2012, summer 2013 and winter 2013) using trammel nets. Diets were characterized and digestive tract contents of the 10 most abundant fish species were compared between the no take MPAs (treatment) and adjacent areas (controls), and changes evaluated as a function of time since protection. Results revealed significant differences between the diets of fish from protected and non protected areas, with crabs being the preferential prey in both protected and control areas but being more ingested outside the no-take areas. However, these differences were evident since the beginning of the study. Fish assemblages from the northern area presented significantly larger niche breadth and significantly increasing with time. This way, the main effects of no-take MPA implementation were directly visible on the niche breadth but did not directly impact the diet composition of the sampled fish assemblages, contributing however to reinforce the already naturally existent differences. This work provides important information regarding the effect of changes in the fish assemblage caused by MPA designation on the trophic ecology of fish.
Resumo:
The present study deals with the development of systematic conservation planning as management instrument in small oceanic islands, ensuring open systems of governance, and able to integrate an informed and involved participation of the stakeholders. Marxan software was used to define management areas according a set of alternative land use scenarios considering different conservation and management paradigms. Modeled conservation zones were interpreted and compared with the existing protected areas allowing more fused information for future trade-outs and stakeholder's involvement. The results, allowing the identification of Target Management Units (TMU) based on the consideration of different development scenarios proved to be consistent with a feasible development of evaluation approaches able to support sound governance systems. Moreover, the detailed geographic identification of TMU seems to be able to support participated policies towards a more sustainable management of the entire island
Resumo:
Mark-recapture tagging and acoustic telemetry were used to study the movements of Diplodus sargus within the Pessegueiro Island no-take Marine Protected Area (MPA), (Portugal) and assess its size adequacy for this species' protection against fishing activities. Therefore, 894 Diplodus sargus were captured and marked with conventional plastic t-bar tags. At the same time, 19 D. sargus were tagged with acoustic transmitters and monitored by 20 automatic acoustic receivers inside the no-take MPA for 60 days. Recapture rate of conventionally tagged specimens was 3.47%, most occurring during subsequent marking campaigns. One individual however was recaptured by recreational fishermen near Faro (ca. 250 km from the tagging location) 6 months after release. Furthermore, three specimens were recaptured in October 2013 near releasing site, one year after being tagged. Regarding acoustic telemetry, 18 specimens were detected by the receivers during most of the study period. To analyse no-take MPA use, the study site was divided into five areas reflecting habitat characteristics, three of which were frequently used by the tagged fish: Exterior, Interior Protected and Interior Exposed areas. Information on no-take protected area use was also analysed according to diel and tidal patterns. Preferred passageways and permanence areas were identified and high site fidelity was confirmed. The interaction between tide and time of day influenced space use patterns, with higher and more variable movements during daytime and neap tides. This no-take MPA proved to be an important refuge and feeding area for this species, encompassing most of the home ranges of tagged specimens. Therefore, it is likely that this no-take MPA is of adequate size to protect D. sargus against fishing activities, thus contributing to its sustainable management in the region.