3 resultados para principle component analysis

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The comparative study based on spectroscopic analysis of the materials used to produce four sixteenth-century Manueline Charters (the Charters of Alcochete, Terena, Alandroal and Evora) was performed following a systematic analytical approach. SEM–EDS, l-Raman and l-FTIR analysis highlighted interesting features between them, namely the use of different pigments and colourants (such as different green and yellow pigments), the presence of pigments alterations and the use of a non-expected extemporaneous material (with the presence of titanium white in the Charter of Alcochete). Principal component analysis restricted to the C–H absorption region (3000–2840 cm-1) was applied to 36 infrared spectra of blue historical samples from the Charters of Alcochete,Terena, Alandroal and Évora, suggesting the use of a mixture of a triglyceride and polysaccharide as binder.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A Flood Vulnerability Index (FloodVI) was developed using Principal Component Analysis (PCA) and a new aggregation method based on Cluster Analysis (CA). PCA simplifies a large number of variables into a few uncorrelated factors representing the social, economic, physical and environmental dimensions of vulnerability. CA groups areas that have the same characteristics in terms of vulnerability into vulnerability classes. The grouping of the areas determines their classification contrary to other aggregation methods in which the areas' classification determines their grouping. While other aggregation methods distribute the areas into classes, in an artificial manner, by imposing a certain probability for an area to belong to a certain class, as determined by the assumption that the aggregation measure used is normally distributed, CA does not constrain the distribution of the areas by the classes. FloodVI was designed at the neighbourhood level and was applied to the Portuguese municipality of Vila Nova de Gaia where several flood events have taken place in the recent past. The FloodVI sensitivity was assessed using three different aggregation methods: the sum of component scores, the first component score and the weighted sum of component scores. The results highlight the sensitivity of the FloodVI to different aggregation methods. Both sum of component scores and weighted sum of component scores have shown similar results. The first component score aggregation method classifies almost all areas as having medium vulnerability and finally the results obtained using the CA show a distinct differentiation of the vulnerability where hot spots can be clearly identified. The information provided by records of previous flood events corroborate the results obtained with CA, because the inundated areas with greater damages are those that are identified as high and very high vulnerability areas by CA. This supports the fact that CA provides a reliable FloodVI.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Subtle structural differencescan be observed in the islets of Langer-hans region of microscopic image of pancreas cell of the rats having normal glucose tolerance and the rats having pre-diabetic(glucose intolerant)situa-tions. This paper proposes a way to automatically segment the islets of Langer-hans region fromthe histological image of rat's pancreas cell and on the basis of some morphological feature extracted from the segmented region the images are classified as normal and pre-diabetic.The experiment is done on a set of 134 images of which 56 are of normal type and the rests 78 are of pre-diabetictype. The work has two stages: primarily,segmentationof theregion of interest (roi)i.e. islets of Langerhansfrom the pancreatic cell and secondly, the extrac-tion of the morphological featuresfrom the region of interest for classification. Wavelet analysis and connected component analysis method have been used for automatic segmentationof the images. A few classifiers like OneRule, Naïve Bayes, MLP, J48 Tree, SVM etc.are used for evaluation among which MLP performed the best.