4 resultados para physical and chemical factors
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
The production of AC was achieved using the most common industrial and consumer solid waste, namely PET, alone or blended with other synthetic polymer such PAN. The PET-PAN mixture (1:1 W/W %) was subjected to carbonization, with a pyrolysis yield off 31.9%, between that obtained with PET (16.9%) or PAN (42.6%) separately. By mixing PET, as a raw material, with PAN (different ratio), an improvement in the final yield of the AC production, for the same activation time, with CO2, was found.
Resumo:
The production of AC was achieved using the most common industrial and consumer solid waste, namely PET, alone or blended with other synthetic polymer such PAN. The PET-PAN mixture (1:1 W/W %) was subjected to carbonization, with a pyrolysis yield off 31.9%, between that obtained with PET (16.9%) or PAN (42.6%) separately. By mixing PET, as a raw material, with PAN (different ratio), an improvement in the final yield of the AC production, for the same activation time, with CO2, was found.
Resumo:
Vegetative propagation of superior conifer trees can be achieved e.g. through rooted cuttings or rooted microshoots, the latter predominantly through in vitro tissue culture. Both techniques are used to achieve rapid multiplication of trees with favorable genetic combinations and to capture a large proportion of the genetic diversity in a single generation cycle. However, adventitious rooting of shoots (cuttings) is often not efficient due to various problems such as scarcity of roots and cessation of their growth, both of which limit the application of vegetative propagation in some conifer species. Many factors are involved in the adventitious rooting of shoots including physical and chemical ones such as plant growth regulators, carbohydrates, light quality, temperature and rooting substrates or media (reviewed by Ragonezi et al. 2010). The focus of this review is on biological factors, such as inoculations with Agrobacterium rhizogenes, plant- growth-promoting rhizobacteria and other endophytes, and mycorrhizal fungi, which were found to stimulate adventitious rooting. These microorganisms could contribute not only to adventitious root development but also help in protecting conifer plants against pathogenic microorganisms, facilitate acclimation and transplanting, and contribute to more sustainable, chemical-free forests.
Resumo:
The present work was done on two ambrotypes and two tintypes. It aimed evaluate their chemical and physical characteristics, especially their degradation patterns. Moreover, to understand the materials used for their production and cross-check analytical and historical information about the production processes. To do so multi-analytical, non-destructive methods were applied. Technical photography highlighted the surface morphology of the objects and showed the distribution of the protective coatings on their surfaces through UV radiation, which were very different between the four pieces. OM allowed for a detailed observation of the surfaces along with the selection of areas of interest to be analysed with SEM-EDS. SEM-EDS was the technique used most extensively and the one that provided the most insightful results: it allowed to observe the morphology of the image forming particles and the differences between highlights, dark areas and the interfaces between them. Also, elemental point analysis and elemental maps were used to identify the image forming particles as silver and to detect the presence of compounds related to the production, particularly gold used to highlight jewellery, iron as the red pigment and traces of the compounds used in the photographic process containing Ag, I, Na and S . Also, some degradation compounds were analysed containing Ag, Cu, S and Cl. With μ-FT-IR the presence of collodion was confirmed and the source of the protective varnishes was identified, particularly mastic and shellac, in either mixtures of the two or only one. μ-Raman detected the presence of metallic silver and silver chloride on the objects and identified one of the red pigments as Mars red. Finally, μ-XRD showed the presence of metallic silver and silver iodide on both ambrotypes and tintypes and hematite, magnetite and wuestite on the tintypes; RESUMO: O presente estudo foi desenvolvido sobre dois ambrótipos e dois ferrótipos. O propósito consiste em estudar as suas características químicas e físicas, dando particular ênfase aos padrões de degradação. Também é pretendido compreender os materiais usados na sua produção e relacionar esta informação analítca com dados históricos de manuais técnicos contemporâneos à produção dos objectos. Para tal foram utilizadas técnicas multi-analíticas e não destrutivas. O uso da fotografia técnica permitiu uma observação da morfologia das superficies dos objectos e da distribuição das camadas de verniz através da radiação UV, muito diferente entre os quatro. A microscopia óptica proporcionou uma observação detalhada das superfícies assim como a selecção de pontos de interesse para serem analisados com SEM-EDS. SEM-EDS foi a técnica usada mais extensivamente e a que proporcionou os resultados mais detalhados: observação da morofologia das partículas formadoras da imagem e as diferenças entre zonas de altas luzes, baixas luzes e as interfaces entre elas. A análise elemental e os mapas elementares foram usados para detectar prata nas partículas formadoras da imagem e a presença de compostos relacionados com a produção, em particular ouro utilizado para realçar joalharia, ferro no pigmento vermelho e vestígios de compostos utilizados no processo fotográfico incluindo Ag, I, Na e S. Do mesmo modo, alguns compostos de degradação foram analisados contendo Ag, Cu, S e Cl. Com μ-FT-IR a presença de colódio foi confirmada e identificada a origem dos vernizes, mástique e goma-laca, tanto em misturas dos dois como apenas um. Com μ-Raman foi detectada a presença de prata metálica e de cloreto de prata e identificado um dos pigmentos vermelhos como Mars red. Finalmente, μ-DRX revelou a presença de prata metálica e iodeto de prata tanto nos ambrótipos como nos ferrótipos e hematite, magnetite e wuestite nos ferrótipos.