3 resultados para penalty-based aggregation functions
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
This paper addresses current changes in the highly diverse European landscape, and the way these transitions are being treated in policy and landscape management in the fragmented, heterogeneous and dynamic context of today’s Europe. It appears that intersecting driving forces are increasing the complexity of European landscapes and causing polarising developments in agricultural land use, biodiversity conservation and cultural landscape management. On the one hand, multifunctional rural landscapes, especially in peri-urban regions, provide services and functions that serve the citizens in their demand for identity, support their sense of belonging and offer opportunities for recreation and involvement in practical landscape management. On the other hand, industrial agricultural production on increasingly large farms produces food, feed, fibre and energy to serve expanding international markets with rural live ability and accessibility as a minor issue. The intermediate areas of traditionally dominant small and family farms in Europe seem to be gradually declining in profitability. The paper discusses the potential of a governance approach that can cope with the requirement of optimising land-sharing conditions and community-based landscape development, while adapting to global market conditions.
Resumo:
Logistic regression is a statistical tool widely used for predicting species’ potential distributions starting from presence/absence data and a set of independent variables. However, logistic regression equations compute probability values based not only on the values of the predictor variables but also on the relative proportion of presences and absences in the dataset, which does not adequately describe the environmental favourability for or against species presence. A few strategies have been used to circumvent this, but they usually imply an alteration of the original data or the discarding of potentially valuable information. We propose a way to obtain from logistic regression an environmental favourability function whose results are not affected by an uneven proportion of presences and absences. We tested the method on the distribution of virtual species in an imaginary territory. The favourability models yielded similar values regardless of the variation in the presence/absence ratio. We also illustrate with the example of the Pyrenean desman’s (Galemys pyrenaicus) distribution in Spain. The favourability model yielded more realistic potential distribution maps than the logistic regression model. Favourability values can be regarded as the degree of membership of the fuzzy set of sites whose environmental conditions are favourable to the species, which enables applying the rules of fuzzy logic to distribution modelling. They also allow for direct comparisons between models for species with different presence/absence ratios in the study area. This makes themmore useful to estimate the conservation value of areas, to design ecological corridors, or to select appropriate areas for species reintroductions.
Resumo:
A new semi-implicit stress integration algorithm for finite strain plasticity (compatible with hyperelas- ticity) is introduced. Its most distinctive feature is the use of different parameterizations of equilibrium and reference configurations. Rotation terms (nonlinear trigonometric functions) are integrated explicitly and correspond to a change in the reference configuration. In contrast, relative Green–Lagrange strains (which are quadratic in terms of displacements) represent the equilibrium configuration implicitly. In addition, the adequacy of several objective stress rates in the semi-implicit context is studied. We para- metrize both reference and equilibrium configurations, in contrast with the so-called objective stress integration algorithms which use coinciding configurations. A single constitutive framework provides quantities needed by common discretization schemes. This is computationally convenient and robust, as all elements only need to provide pre-established quantities irrespectively of the constitutive model. In this work, mixed strain/stress control is used, as well as our smoothing algorithm for the complemen- tarity condition. Exceptional time-step robustness is achieved in elasto-plastic problems: often fewer than one-tenth of the typical number of time increments can be used with a quantifiable effect in accuracy. The proposed algorithm is general: all hyperelastic models and all classical elasto-plastic models can be employed. Plane-stress, Shell and 3D examples are used to illustrate the new algorithm. Both isotropic and anisotropic behavior is presented in elasto-plastic and hyperelastic examples.