5 resultados para paleozoic shale
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
The carbonated sedimentation in Ossa-Morena Zone during the Palaeozoic is formed, at least, by two main episodes. However, some chronological questions remain open, due to lack of biostratigraphic data in some carbonates. Sr isotope analysis was performed in selected limestones and marbles of Ossa-Morena Zone, in order to discriminate the Sr signature of the two main carbonate sedimentation episodes. The Sr isotopic data from the analyzed carbonate show two clusters of 87Sr/86Sr ratios, one related with the Lower Cambrian and other with the Lower-Middle Devonian carbonates.
Resumo:
The Santa Eulalia plutonic complex (SEPC) is a late-Variscan granitic body placed in the Ossa-Morena Zone. The host rocks of the complex belong to metamorphic formations from Proterozoic to Lower Paleozoic. The SEPC is a ring massif (ca. 400 km2 area) composed by two main granitic facies with different colours and textures. From the rim to the core, there is (i) a peripheral pink medium- to coarse-grained granite (G0 group) involving large elongated masses of mafic and intermediate rocks, from gabbros to granodiorites (M group), and (ii) a central gray medium-grained granite (G1 group). The mafic to intermediate rocks (M group) are metaluminous and show wide compositions: 3.34–13.51 wt% MgO; 0.70–7.20 ppm Th; 0.84–1.06 (Eu/Eu*)N (Eu* calculated between Sm and Tb); 0.23–0.97 (Nb/Nb*)N (Nb* calculated between Th and La). Although involving the M-type bodies and forming the outer ring, the G0 granites are the most differentiated magmatic rocks of the SEPC, with a transitional character between metaluminous and peraluminous: 0.00–0.62 wt% MgO; 15.00–56.00 ppm Th; and 0.19–0.42 (Eu/Eu*)N ; 0.08–0.19 (Nb/Nb*)N [1][2]. The G1 group is composed by monzonitic granites with a dominant peraluminous character and represents the most homogeneous compositional group of the SEPC: 0.65–1.02 wt% MgO; 13.00–16.95 ppm Th; 0.57–0.70 (Eu/Eu*)N ; 0.14–0.16 (Nb/Nb*)N . According to the SiO2 vs. (Na2O+K2O–CaO) relationships, the M and G1 groups predominantly fall in the calc-alkaline field, while the G0 group is essencially alkali-calcic; on the basis of the SiO2 vs. FeOt/(FeOt+MgO) correlation, SEPC should be considered as a magnesian plutonic association [3]. New geochronological data (U-Pb on zircons) slightly correct the age of the SEPC, previously obtained by other methods (290 Ma, [4]). They provide ages of 306 2 Ma for the M group, 305 6 Ma for the G1 group, and 301 4 Ma for the G0 group, which confirm the late-Variscan character of the SEPC, indicating however a faintly older emplacement, during the Upper Carboniferous. Recent whole-rock isotopic data show that the Rb-Sr system suffered significant post-magmatic disturbance, but reveal a consistent set of Sm-Nd results valuable in the approach to the magmatic sources of this massif: M group (2.9 < Ndi < +1.8); G1 group (5.8 < Ndi < 4.6); G0 group (2.2 < Ndi < 0.8). These geochemical data suggest a petrogenetic model for the SEPC explained by a magmatic event developed in two stages. Initially, magmas derived from long-term depleted mantle sources (Ndi < +1.8 in M group) were extracted to the crust promoting its partial melting and extensive mixing and/or AFC magmatic evolution, thereby generating the G1 granites (Ndi < 4.6). Subsequently, a later extraction of similar primary magmas in the same place or nearby, could have caused partial melting of some intermediate facies (e.g. diorites) of the M group, followed by magmatic differentiation processes, mainly fractional crystallization, able to produce residual liquids compositionally close to the G0 granites (Ndi < 0.8). The kinetic energy associated with the structurally controlled (cauldron subsidence type?) motion of the G0 liquids to the periphery, would have been strong enough to drag up M group blocks as those occurring inside the G0 granitic ring.
Resumo:
O presente trabalho consiste na apresentação da diversidade de seláceos do Farol das Lagostas pertencente à Bacia do Cuanza. Os condrichthyes são componentes comuns da fauna aquática desde o Paleozoico. No entanto, devido à natureza cartilaginosa do esqueleto, o registo paleontológico dos mesmos restringe-se, basicamente, às partes mineralizadas como dentes, dentículos dérmicos e espinhas cefálicas O lugar Farol das Lagostas contém uma fauna de seláceos relativamente rica e variada, representada neste estudo por cerca de 1.000 dentes isolados, além de outras peças esqueléticas. Foram identificados e descritos quarenta e quatro taxa, pertencentes às seguintes ordens: Hexanchiformes, Squaliformes, Pristiophoriformes, Squatiniformes, Lamniformes, Carcharhiniformes, Rajiformes e Myliobatiformes. Trata-se de uma diversidade faunística cuja maioria dos géneros possui representantes atuais. Os Carcharhiniformes representam 53% dos taxa identificados. Estão representadas as famílias Scyliorhinidae, Triakidae, Hemigaleidae, Carcharhinidae e Sphyrnidae, com 18 espécies. Verifica-se a presença de formas bentónicas e nectónicas que indicam condições térmicas moderadas, quentes e tropicais a temperadas, que habitam frequentemente zonas costeiras. A relação faunística identificada corresponde a uma zona litoral. Ora, considerando o conjunto de dados em face da presença de fauna pelágica e dos grandes predadores, especialmente Isurus hastalis e Carcharocles megalodon, podemos admitir que existisse então um Golfo relativamente largo de uma faixa Atlântica aberta (Antunes & Balbino, 2004); ABSTRACT: Selachians from Farol the Lagostas (Cuanza Basin, Angola) The present work consists of the presentation of diversity of selachians from Farol das Lagostas, which belongs to the Cuanza Basin. The condrichthyes are a part of aquatic fauna since the Paleozoic. However, due to the nature of the cartilaginous skeleton, the paleontological registration of the same ones is restricted to mineralized parts like teeth, dermal denticles and cephalic spines. The of formation, Farol das Lagostas has a fauna of selachian relatively rich and diverse, represented in this study for around 1.000 isolated teeth, and other skeletal parts. Forty four taxa were described and identified, belonging to the following orders: Hexanchiformes, Squaliformes, Pristiophoriformes, Squatiniformes, Lamniformes, Carcharhiniformes, Rajiformes e Myliobatiformes. It’s a faunal diversity whose most genera have current representatives. The Carcharhiniformes represente 53% of the identified taxa. The represented families are Scyliorhinidae, Triakidae, Hemigaleidae, Carcharhinidae e Sphyrnidae, with 18 species. There is presence of benthic and nektonic forms that indicate moderate thermal conditions, the temperate and tropical hot, often inhabit coastal areas. The identified faunal relation corresponds to a coastal zone. So, considering the data set, due to the presence of pelagic fauna and large predators, especially Isurus hastalis e Carcharocles megalodon, we can admit that then there was a relatively large Gulf of open Atlantic range (Antunes & Balbino, 2004).
Resumo:
An integrated interpretation of the late Paleozoic structural and geochronological record of the Iberian Massif is presented and discussed under the perspective of a Gondwana-Laurussia collision giving way to the Variscan orogen. Compressional and extensional structures developed during the building of the Variscan orogenic crust of Iberia are linked together into major tectonic events operating at lithosphere scale. A review of the tectonometamorphic and magmatic evolution of the IberianMassif reveals backs and forths in the overall conver- gence between Gondwana and Laurussia during theamalgamation of Pangea in late Paleozoic times. Stages dom- inated by lithosphere compression are characterized by subduction, both oceanic and continental, development of magmatic arcs, (over- and under-) thrusting of continental lithosphere, and folding. Variscan convergence re- sulted in the eventual transference of a large allochthonous set of peri-Gondwanan terranes, the Iberian Allochthon, onto the Gondwana mainland. The Iberian Allochthon bears the imprint of previous interaction be- tween Gondwana and Laurussia, including their juxtaposition after the closure of the Rheic Ocean in Lower De- vonian times. Stages governed by lithosphere extension are featured by the opening of two short-lived oceanic basins that dissected previous Variscan orogenic crust, first in the Lower-Middle Devonian, following the closure of the Rheic Ocean, and then in the early Carboniferous, following the emplacement of the peri-Gondwanan allochthon. An additional, major intra-orogenic extensional event in the early-middle Carboniferous dismem- bered the Iberian Allochthon into individual thrust stacks separated by extensional faults and domes. Lateral tec- tonics played an important role through the Variscan orogenesis, especially during the creation of new tectonic blocks separated by intracontinental strike-slip shear zones in the late stages of continental convergence.
Resumo:
The late Paleozoic collision between Gondwana and Laurussia resulted in the polyphase deformation and magmatism that characterizes the Iberian Massif of the Variscan orogen. In the Central Iberian Zone, initial con- tinental thickening (D1; folding and thrusting) was followed by extensional orogenic collapse (D2) responsible for the exhumation of high-grade rocks coeval to the emplacement of granitoids. This study presents a tectonometamorphic analysis of the Trancoso-Pinhel region (Central Iberian Zone) to ex- plain the processes in place during the transition froman extension-dominated state (D2) to a compression-dom- inated one (D3).Wereveal the existence of low-dipping D2 extensional structures later affected by several pulses of subhorizontal shortening, each of them typified by upright folds and strike-slip shearing (D3, D4 and D5, as identified by superimposition of structures). The D2 Pinhel extensional shear zone separates a low-grade domain from an underlying high-grade domain, and it contributed to the thermal reequilibration of the orogen by facil- itating heat advection from lower parts of the crust, crustal thinning, decompression melting, and magma intru- sion. Progressive lessening of the gravitational disequilibrium carried out by this D2 shear zone led to a switch from subhorizontal extension to compression and the eventual cessation and capture of the Pinhel shear zone by strike-slip tectonics during renewed crustal shortening. High-grade domains of the Pinhel shear zone were folded together with low-grade domains to define the current upright folded structure of the Trancoso-Pinhel re- gion, the D3 Tamames-Marofa-Sátão synform. Newdating of syn-orogenic granitoids (SHRIMP U\\Pb zircon dat- ing) intruding the Pinhel shear zone, together with the already published ages of early extensional fabrics constrain the functioning of this shear zone to ca. 331–311 Ma, with maximum tectonomagmatic activity at ca. 321–317 Ma. The capture and apparent cessation of movement of the Pinhel shear zone occurred at ca. 317– 311 Ma.