2 resultados para over budget causes

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper analyses the influence of the extreme Saharan desert dust (DD) event on shortwave (SW) and longwave (LW) radiation at the EARLINET/AERONET Évora station (Southern Portugal) from 4 up to 7 April 2011. There was also some cloud occurrence in the period. In this context, it is essential to quantify the effect of cloud presence on aerosol radiative forcing. A radiative transfer model was initialized with aerosol optical properties, cloud vertical properties and meteorological atmospheric vertical profiles. The intercomparison between the instantaneous TOA shortwave and longwave fluxes derived using CERES and those calculated using SBDART, which was fed with aerosol extinction coefficients derived from the CALIPSO and lidar-PAOLI observations, varying OPAC dataset parameters, was reasonably acceptable within the standard deviations. The dust aerosol type that yields the best fit was found to be the mineral accumulation mode. Therefore, SBDART model constrained with the CERES observations can be used to reliably determine aerosol radiative forcing and heating rates. Aerosol radiative forcings and heating rates were derived in the SW (ARFSw, AHRSw) and LW (ARFLw, AHRLw) spectral ranges, considering a cloud-aerosol free reference atmosphere. We found that AOD at 440 nm increased by a factor of 5 on 6 April with respect to the lower dust load on 4 April. It was responsible by a strong cooling radiative effect pointed out by the ARFSw value (−99 W/m2 for a solar zenith angle of 60°) offset by a warming radiative effect according to ARFLw value (+21.9 W/m2) at the surface. Overall, about 24% and 12% of the dust solar radiative cooling effect is compensated by its longwave warming effect at the surface and at the top of the atmosphere, respectively. Hence, larger aerosol loads could enhance the response between the absorption and re-emission processes increasing the ARFLw with respect to those associated with moderate and low aerosol loads. The unprecedented results derived from this work complement the findings in other regions on the modifications of radiative energy budget by the dust aerosols, which could have relevant influences on the regional climate and will be topics for future investigations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Earth we know today was not always so. Over millions of years have undergone significant ch an g e s brought about by numerous geological phenomena aimed at your balance, some internal order, creating new geological formations and other external order smoothing formations previously created. From t h e tectonic standpoint, Angola is located in a relatively stable area which gives it a certain p ri v i l e g e w h e n compared with some Asian countries or even Americans where quite often occur earthquakes and volcanic eruptions. However, the same cannot be said in relation to the occurrence of an external geodynamics phenomena, such as the ravines, which in recent years has taken shape in many provinces, especially due to anthropogenic activity, giving rise to geological hazards, increasing the risk of damage in buildings and others infrastructures, losses direct or indirect in economic activities and loss of human lives. We understand that the reducing of these risks starts, in particular, by their identification, for later take preventive measures. This work is the result of some research work carried out by the authors through erosion courses of s o i l and stabilization of soils subject to erosion phenomena, carried out by Engineering Laboratory of Angola (LEA). For the realization of this work, we resorted to cartographic data query, literature, listening to s o m e o f the provincial representatives and local residents, as well as the observation in lo co o f s o m e af f e ct ed areas. The results allow us to infer that the main provinces affected by ravine phenomenon are located in Central and Northern highlands, as well as in the eastern region, and more recently in Cuando-Cub an go province. Not ruling out, however, other regions, such as in Luanda and Cabinda [1]. Relatively the causes, we can say that the ravines in Angola are primarily due to the combination of three natural factors: climate, topography and type of soil [2]. When we add the anthropogenic activit y , namely the execution of construction works, the drainage system obstructio n, exploration of m i n e ral s, agriculture and fires, it is verified an increasing of the phenomenon, often requiring immedi at e act i o n . These interventions can be done through structural or engineering measures and by the stabilization measures on the degraded soil cover [3]. We present an example of stabilization measures throu g h t h e deployment of a local vegetation called Pennisetum purpureum. It is expected that the results may contribute to a better understanding of the causes of the ravine phenomenon in Angola and that the adopted stabilization method can be adapted in other affected provinces in order to prevent and making the contention of the ravines.