2 resultados para north-western Spain

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Procambarus clarkii is currently recorded from 16 European territories. On top of being a vector of crayfish plague, which is responsible for large-scale disappearance of native crayfish species, it causes severe impacts on diverse aquatic ecosystems, due to its rapid life cycle, dispersal capacities, burrowing activities and high population densities. The species has even been recently discovered in caves. This invasive crayfish is a polytrophic keystone species that can exert multiple pressures on ecosystems. Most studies deal with the decline of macrophytes and predation on several species (amphibians, molluscs, and macroinvertebrates), highlighting how this biodiversity loss leads to unbalanced food chains. At a management level, the species is considered as (a) a devastating digger of the water drainage systems in southern and central Europe, (b) an agricultural pest in Mediterranean territories, consuming, for example, young rice plants, and (c) a threat to the restoration of water bodies in north-western Europe. Indeed, among the high-risk species, P. clarkii consistently attained the highest risk rating. Its negative impacts on ecosystem services were evaluated. These may include the loss of provisioning services such as reductions in valued edible native species of regulatory and supporting services, inducing wide changes in ecological communities and increased costs to agriculture and water management. Finally, cultural services may be lost. The species fulfils the criteria of the Article 4(3) of Regulation (EU) No 1143/2014 of the European Parliament (species widely spread in Europe and impossible to eradicate in a cost-effective manner) and has been included in the “Union List”. Particularly, awareness of the ornamental trade through the internet must be reinforced within the European Community and import and trade regulations should be imposed to reduce the availability of this high-risk species.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Deccan Volcanic Province (DVP) was built up by three major phases of eruptions; the most voluminous of which, the Deccan Phase 2, encompassed the Cretaceous–Palaeogene (KT) boundary. Deccan eruptions have been implicated as a contributor to the end-Cretaceous mass extinction, however, mechanism by which volcanic activity affected biota remains poorly understood. We applied a combination of rock magnetic techniques scanning electron microscopy to characterize mineral assemblages of three sections of intertrappean lacustrine sediments from the north-western Maharashtra Deccan Volcanic Provinces. Our results indicate that in sediments deposited during the early stages of the Deccan Phase 2, the Daïwal River and Dhapewada sequences, iron-bearing mineral association is dominated by detrital iron oxides (magnetite and hematite) sourced from the weathering of the surrounding basaltic bedrocks, with minor contribution form authigenic iron sulphides (framboidal pyrite, pyrrhotite and/or greigite). The sediments deposited during the final stages of Phase 2 (the Podgawan sequence) differ significantly in their characteristics. In particular, the Podgawan sediments have 1) very low magnetic susceptibility values, but higher terrigenous fraction (clays and shales) content; 2) more complex assemblage of magnetic minerals, 3) ubiquitous presence of Fe–Ca–Ce vanadates; and 4) unusual lithological variations in the middle part of the section (represented by a charcoal-rich level that is capped by a red clay layer containing fossilized bacterial colonies). We suggest that these unusual characteristics reflect increased acidity in the region during the deposition of the Podgawan sequence, likely due to cumulative effects of volcanic aerosols released during the Deccan Phase 2 eruptions. The combination of these features may be used to recognize episodes of increased acidity in the geological record. Our results also contribute to understanding of local vs. global effects of the Deccan volcanism.