2 resultados para modelling the robot
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
The aim of this study was to compute a swimming performance confirmatory model based on biomechanical parameters. The sample included 100 young swimmers (overall: 12.3 ± 0.74 years; 49 boys: 12.5 ± 0.76 years; 51 girls: 12.2 ± 0.71 years; both genders in Tanner stages 1–2 by self-report) participating on a regular basis in regional and national-level events. The 100 m freestyle event was chosen as the performance indicator. Anthropometric (arm span), strength (throwing velocity), power output (power to overcome drag), kinematic (swimming velocity) and efficiency (propelling efficiency) parameters were measured and included in the model. The path-flow analysis procedure was used to design and compute the model. The anthropometric parameter (arm span) was excluded in the final model, increasing its goodness-of-fit. The final model included the throw velocity, power output, swimming velocity and propelling efficiency. All links were significant between the parameters included, but the throw velocity–power output. The final model was explained by 69% presenting a reasonable adjustment (model’s goodness-of-fit; x2/df = 3.89). This model shows that strength and power output parameters do play a mediator and meaningful role in the young swimmers’ performance.
Resumo:
Bonelli’s eagle, Hieraaetus fasciatus , has recently suffered a severe population decline and is currently endangered. Spain supports about 70% of the European population. We used stepwise logistic regression on a set of environmental, spatial and human variables to model Bonelli’s eagle distribution in the 5167 UTM 10 × 10 km quadrats of peninsular Spain. We obtained a model based on 16 variables, which allowed us to identify favourable and unfavourable areas for this species in Spain, as well as intermediate favourability areas. We assessed the stepwise progression of the model by comparing the model’s predictions in each step with those of the final model, and selected a parsimonious explanatory model based on three variables — slope, July temperature and precipitation — comprising 76% of the predictive capacity of the