5 resultados para lutra lutra
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
A Lontra Euroasiática foi alvo de quatro prospeções na Península Ibérica (1990-2008). Em 2003, foi publicado um modelo de distribuição da lontra, com base nos dados de presença/ausência das prospeções publicadas em 1998. Dadas as suas características, este tipo de modelos pode tornar-se um elemento chave nas estratégias de recuperação da lontra como também, de outras espécies, se comprovada a sua fiabilidade e capacidade de antecipar tendências na distribuição das mesmas. Assim, esta dissertação confrontou as previsões do modelo com os dados de distribuição de 2008, a fim de identificar potências áreas de discordância. Os resultados revelam que, o modelo de distribuição de lontra proposto, apesar de ter por base dados de 1998 e de não considerar explicitamente processos biológicos, conseguiu captar o essencial da relação espécie-ambiente, resultando num bom desempenho preditivo para a distribuição da mesma em Espanha, uma década depois da sua construção; Evolution of otter (Lutra lutra L.) distribution in the Iberian Peninsula: Models at different scales and their projection through space and time Abstract: The Eurasian otter was already surveyed four times in the Iberian Peninsula (1990-2008). In 2003, a distribution model for the otter based on presence/absence data from the survey published in 1998, was published. This type of models has advantages that can make it in a key element for otter conservation strategies and also, for other species, but only, if their reliability and capability to predict species distribution tendencies are validated. The present thesis compares the model predictions with 2008 data, in order to find potential mismatch areas. Results suggest that, although the distribution model for the otter was based on data from 1998 and, doesn’t include explicitly biological mechanisms, it managed to correctly identify the essence of the species-environment relationship, what was translated in a good predictive performance for its actual distribution in Spain, after a decade of its construction.
Resumo:
We used the results of the Spanish Otter Survey of 1994–1996, a Geographic Information System and stepwise multiple logistic regression to model otter presence/absence data in the continental Spanish UTM 10 10-km squares. Geographic situation, indicators of human activity such as highways and major urban centers, and environmental variables related with productivity, water availability, altitude, and environmental energy were included in a logistic model that correctly classified about 73% of otter presences and absences. We extrapolated the model to the adjacent territory of Portugal, and increased the model’s spatial resolution by extrapolating it to 1 1-km squares in the whole Iberian Peninsula. The model turned out to be rather flexible, predicting, for instance, the species to be very restricted to the courses of rivers in some areas, and more widespread in others. This allowed us to determine areas where otter populations may be more vulnerable to habitat changes or harmful human interventions. # 2003 Elsevier Ltd. All rights reserved.
Resumo:
In a previous survey of otters ( Lutra lutra L. 1758) in Spain, different causes were invoked to explain the frequency of the species in each province. To find common causes of the distribution of the otter in Spain, we recorded a number of spatial, environmental and human variables in each Spanish province. We then performed a stepwise linear multiple regression of the proportion of positive sites of otter in the Spanish provinces separately on each of the three groups of variables. Geographic longitude, January air humidity, soil permeability and highway density were the variables selected. A linear regression of the proportion of otter presence on these variables explained 62.4% of the variance. We then used the selected variables in a partial regression analysis to specify which proportions of the variation are explained exclusively by spatial, environmental and human factors, and which proportions are attributable to interactions between these components. Pure environmental effects accounted for only 5.5% of the variation, while pure spatial and pure human effects explained 18% and 9.7%, respectively. Shared variation among the components totalled 29.2%, of which 10.9% was explained by the interaction between environmental and spatial factors. Human factors explained globally less variance than spatial and environmental ones, but the pure human influence was higher than the pure environmental one. We concluded that most of the variation in the proportion of occurrences of otter in Spanish provinces is spatially structured, and that environmental factors have more influence on otter presence than human ones; however, the human influence on otter distribution is less structured in space, and thus can be more disruptive. This effect of large infrastructures on wild populations must be taken into account when planning large-scale conservation policies
Resumo:
Distribution models are used increasingly for species conservation assessments over extensive areas, but the spatial resolution of the modeled data and, consequently, of the predictions generated directly from these models are usually too coarse for local conservation applications. Comprehensive distribution data at finer spatial resolution, however, require a level of sampling that is impractical for most species and regions. Models can be downscaled to predict distribution at finer resolutions, but this increases uncertainty because the predictive ability of models is not necessarily consistent beyond their original scale. We analyzed the performance of downscaled, previously published models of environmental favorability (a generalized linear modeling technique) for a restricted endemic insectivore, the Iberian desman (Galemys pyrenaicus), and a more widespread carnivore, the Eurasian otter ( Lutra lutra), in the Iberian Peninsula. The models, built from presence–absence data at 10 × 10 km resolution, were extrapolated to a resolution 100 times finer (1 × 1 km). We compared downscaled predictions of environmental quality for the two species with published data on local observations and on important conservation sites proposed by experts. Predictions were significantly related to observed presence or absence of species and to expert selection of sampling sites and important conservation sites. Our results suggest the potential usefulness of downscaled projections of environmental quality as a proxy for expensive and time-consuming field studies when the field studies are not feasible. This method may be valid for other similar species if coarse-resolution distribution data are available to define high-quality areas at a scale that is practical for the application of concrete conservation measures
Resumo:
Species distribution and ecological niche models are increasingly used in biodiversity management and conservation. However, one thing that is important but rarely done is to follow up on the predictive performance of these models over time, to check if their predictions are fulfilled and maintain accuracy, or if they apply only to the set in which they were produced. In 2003, a distribution model of the Eurasian otter (Lutra lutra) in Spain was published, based on the results of a country-wide otter survey published in 1998. This model was built with logistic regression of otter presence-absence in UTM 10 km2 cells on a diverse set of environmental, human and spatial variables, selected according to statistical criteria. Here we evaluate this model against the results of the most recent otter survey, carried out a decade later and after a significant expansion of the otter distribution area in this country. Despite the time elapsed and the evident changes in this species’ distribution, the model maintained a good predictive capacity, considering both discrimination and calibration measures. Otter distribution did not expand randomly or simply towards vicinity areas,m but specifically towards the areas predicted as most favourable by the model based on data from 10 years before. This corroborates the utility of predictive distribution models, at least in the medium term and when they are made with robust methods and relevant predictor variables.