2 resultados para isotopic analysis
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
This study presents for the first time the diet of a Late Antiquity population in southern Portugal (Civitas of Pax Julia), from the Roman villa of Monte da Cegonha (predominantly 7th century CE). Stable isotope analysis (δ13C, δ15N, δ18O, 87Sr/86Sr) of human and faunal bone collagen and apatite was conducted in order to understand the influence of Roman subsistence strategies on the way of life of rural inhabitants of the area of Pax Julia and to explore their diet (types of ingested plants, amount of animal resources, terrestrial versus marine resources). X-ray diffraction (XRD) and Fourier transform infra-red spectroscopy (FTIR) analyses were used to determine the degree of bone diagenesis and assess the reliability of the bone stable isotopic composition for palaeodietary reconstruction. Anthropological analysis revealed a cariogenic diet, rich in starchy food and carbohydrates, in at least in two individuals based on the frequency of dental caries. Collagen and apatite carbon isotopic analysis suggested that C3 plants were the basis of the population's diet, complemented with some terrestrial meat and its by-products as reflected by the observed bone collagen nitrogen isotopic composition. Moreover, whilst the fairly low apatite-collagen spacing recorded in some skeletons (at around 4‰) may have been due to freshwater organisms intake, the relatively low nitrogen values observed indicate that this consumption did not occur very often, unless in the form of fresh fish of low trophic level or fish sauces. There were no significant differences in isotopic values depending on gender or burial type. Strontium and oxygen isotopic composition of bone apatite revealed a sedentary community, with the exception of a male individual who probably did not spend his childhood in Monte da Cegonha.
Resumo:
The signature of 60Fe in deep-sea crusts indicates that one or more supernovae exploded in the solar neighbourhood about 2.2 million years ago1–4. Recent isotopic analysis is consistent with a core-collapse or electron-capture supernova that occurred 60 to 130 parsecs from the Sun5. Moreover, peculiarities in the cosmic ray spectrum point to a nearby supernova about two million years ago6. The Local Bubble of hot, diffuse plasma, in which the Solar System is embedded, originated from 14 to 20 supernovae within a moving group, whose surviving members are now in the Scorpius– Centaurus stellar association7,8. Here we report calculations of the most probable trajectories and masses of the supernova progenitors, and hence their explosion times and sites. The 60Fe signal arises from two supernovae at distances between 90 and 100 parsecs. The closest occurred 2.3 million years ago at present-day galactic coordinates l = 327°, b = 11°, and the second-closest exploded about 1.5 million years ago at l = 343°, b = 25°, with masses of 9.2 and 8.8 times the solar mass, respectively. The remaining supernovae, which formed the Local Bubble, contribute to a smaller extent because they happened at larger distances and longer ago (60Fe has a half- life of 2.6 million years9,10). There are uncertainties relating to the nucleosynthesis yields and the loss of 60Fe during transport, but they do not influence the relative distribution of 60Fe in the crust layers, and therefore our model reproduces the measured relative abundances very well.