3 resultados para integrated information response model
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
This paper proposes a novel demand response model using a fuzzy subtractive cluster approach. The model development provides support to domestic consumer decisions on controllable loads management, considering consumers’ consumption needs and the appropriate load shape or rescheduling in order to achieve possible economic benefits. The model based on fuzzy subtractive clustering method considers clusters of domestic consumption covering an adequate consumption range. Analysis of different scenarios is presented considering available electric power and electric energy prices. Simulation results are presented and conclusions of the proposed demand response model are discussed.
Resumo:
This paper proposes a novel demand response model using a fuzzy subtractive cluster approach. The model development provides support to domestic consumer decisions on controllable loads management, considering consumers’ consumption needs and the appropriate load shape or rescheduling in order to achieve possible economic benefits. The model based on fuzzy subtractive clustering method considers clusters of domestic consumption covering an adequate consumption range. Analysis of different scenarios is presented considering available electric power and electric energy prices. Simulation results are presented and conclusions of the proposed demand response model are discussed.
Resumo:
This paper presents our work at 2016 FIRE CHIS. Given a CHIS query and a document associated with that query, the task is to classify the sentences in the document as relevant to the query or not; and further classify the relevant sentences to be supporting, neutral or opposing to the claim made in the query. In this paper, we present two different approaches to do the classification. With the first approach, we implement two models to satisfy the task. We first implement an information retrieval model to retrieve the sentences that are relevant to the query; and then we use supervised learning method to train a classification model to classify the relevant sentences into support, oppose or neutral. With the second approach, we only use machine learning techniques to learn a model and classify the sentences into four classes (relevant & support, relevant & neutral, relevant & oppose, irrelevant & neutral). Our submission for CHIS uses the first approach.